
Déjà Fu: A Concurrency Testing Library for Haskell

Michael Walker
University of York, UK
msw504@york.ac.uk

Colin Runciman
University of York, UK

colin.runciman@york.ac.uk

Abstract
Systematic concurrency testing (SCT) is an approach to testing po-
tentially nondeterministic concurrent programs. SCT avoids poten-
tially unrepeatable results that may arise from unit testing con-
current programs. It seems to have received little attention from
Haskell programmers. This paper introduces a generalisation of
Haskell’s concurrency abstraction in the form of typeclasses, and
a library for testing concurrent programs. A number of examples
are provided, some of which come from pre-existing packages.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Testing tools

Keywords Concurrency, functional programming, Haskell, non-
determinism, systematic concurrency testing

1. Introduction
Haskell has been extended in different ways to express parallelism1

and concurrency2. Deterministic parallelism implementations, such
as the Par monad[12] and Strategies[11] are very suitable for data-
parallel tasks where the difficulty is efficiently performing some
pure computation. However, they achieve their determinism by
constraining the functionality of shared state, and so lose some
convenience and utility.

In this paper, the interest is more general: computations with
constrained nondeterminism, or interaction with the real world, as
a key part of their functioning. Though very general, such compu-
tations can give rise to race conditions and deadlocks.

Example

main :: IO ()
main = do

shared <- newMVar 0
forkIO . void $ swapMVar shared 1
forkIO . void $ swapMVar shared 2
readMVar shared >>= print

This program may look like it will output either “1” or “2”
depending on the ordering of swaps. Actually, a parent thread does

1 Doing multiple things at once.
2 Programming as if doing multiple things at once.

not wait for child threads before terminating[10], so the output may
also be “0”, although this behaviour can only be exhibited in GHC
with multiple OS threads. As we shall see in §4, we can test this
program to produce the following trace:

[pass] Never Deadlocks (checked: 23)
[pass] No Exceptions (checked: 23)
[fail] Consistent Result (checked: 1)
0 S0-------
2 S0----P2---S0---
1 S0----P1---S0---

Here each of the last three lines represents a possible execution
of the program: “S” indicates the start of execution of a thread,
“P” indicates the pre-emption of the running thread by another, and
each dash represents one execution step.

1.1 Contributions
The contributions of this paper are:

• a generalisation of the standard concurrency abstraction, allow-
ing different concrete implementations to be used;

• a library called Déjà Fu3 for systematically testing concurrent
Haskell programs for possible deadlocks, race-conditions, or
uncaught exceptions, with the testing functionality based on
monadic concurrency[14] and schedule bounding[13].

1.2 Roadmap
The rest of the paper is organised as follows.

• §2 reviews the solutions for deterministic parallelism in Haskell,
and highlights their limitations.

• §3 presents the typeclass concurrency-abstraction, emphasising
the few points where it departs from the usual concurrency
model.

• §4 introduces writing tests with Déjà Fu.
• §5 explains how the library implements systematic concurrency

testing.
• §6 presents a small selection of case studies.
• §7 gives pointers to existing concurrency testing work in both

Haskell and other programming languages.
• §8 draws conclusions and suggests further work.

3 [Déjà Fu is] A martial art in which the user’s limbs move in time as well
as space, [. . .] It is best described as “the feeling that you have been kicked
in the head this way before”. (Terry Pratchett, Thief of Time)

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

Haskell’15, September 3-4, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3808-0/15/09...
http://dx.doi.org/10.1145/2804302.2804306

141

2. Deterministic Parallelism and Concurrency in
Haskell

2.1 The Eval Monad
The Eval monad, and the Strategies[11] package built on top of it,
is a way of evaluating data structures in parallel. The programmer
is provided with primitives to evaluate something sequentially, in
parallel (without blocking), and to run an Eval computation.

The following example[10] applies a function to both elements
of a tuple in parallel, waits until the evaluation is complete, and
returns the result:

tupleMap :: (a -> b) -> (a, a) -> (b, b)
tupleMap f (x, y) = runEval $ do

x’ <- rpar $ f x
y’ <- rpar $ f y
rseq x’
rseq y’
return (x’, y’)

There is no notion of threading, or of shared mutable state. The
Eval monad is for the use-case of having a large data structure
which is expensive to compute.

2.2 The Par Monad
The Par monad[12] is a library providing a traditional-looking con-
currency abstraction, providing the programmer with threads and
mutable state, however it maintains determinism by restricting its
shared variables to one write, and operations to read block until a
value has been written. Thus, Par’s IVars are futures, not mutable
state. Par uses a work-stealing scheduler running on multiple oper-
ating system threads, fully evaluating values on their own threads
before inserting them into an IVar. Despite its limitations, the Par
monad can be very effective in speeding up pure code.

The following example maps a function in parallel over a list,
fully evaluating it. Of course, laziness is generally what is desired
in Haskell programs, but often it is known that an entire result will
definitely be needed:

parMap :: NFData b => (a -> b) -> [a] -> [b]
parMap f as = runPar $ do

bs <- mapM (spawnP . f) as
mapM get bs

However, with a lack of multi-write shared variables and non-
blocking reads, Par is unsuitable for long-lived concurrent pro-
grams with a central shared state. It could not be used to implement
a multi-threaded work-stealing scheduler, such as the one under-
pinning Par itself.

2.3 LVish
A recent development is the LVish[9] library, which overcomes
some of the limitations of the Par monad by allowing multiple
writes, as long as they only ever add information to the shared
structure. To maintain determinism, reads of the same kind return
the same value that they always did. LVish allows shared state
which forms a lattice, and reads correspond to seeing a small part
of that lattice.

Necessarily, reads block until there is enough information in
the structure to determine the result. This approach means that the
entire data structure must be kept around for as long as there is a
single reference, even if that reference is only ever used to read a
small part of the data.

3. Déjà Fu: Concurrency and Haskell Revisited
Readers already familiar with Haskell’s concurrency primitives
may find it enough to skim this section noting the syntactic dif-
ferences in the Déjà Fu variant.

Departure Departures from the semantics of the traditional con-
currency abstraction are highlighted like this.

If we remove the limitations, allowing non-blocking reads and
multiple writes, we get to Haskell’s traditional concurrency abstrac-
tion in the IO monad. Déjà Fu1 generalises a very large subset of
that abstraction to work in arbitrary members of a typeclass, named
MonadConc. There is an instance of MonadConc for IO, and so ex-
isting code using only the functions generalised over can be made
suitable for testing quite simply. Existing code which makes use of
more functionality may require a light dusting of liftIOs.

To make use of the Déjà Fu library, we must first import the
class:

import Control.Monad.Conc.Class

3.1 Threads
Threads let a program do multiple things at once. Every program
has at least one thread, which starts where main does and runs until
the program terminates. A thread is the basic unit of concurrency. It
lets us pretend (with parallelism, it might even be true!) that we’re
computing multiple things at once.

We can start a new thread with the fork2 function:

fork :: ... => m () -> m (ThreadId m)

This starts evaluating its argument in a separate thread. It also
gives us back a (monad-specific) ThreadId value, which we can
use to kill the thread later on, if we want.

In a real machine, there are of course a number of processors
and cores. It may be that a particular application of concurrency is
only a net gain if every thread is operating on a separate core, so
that threads are not interrupting each other. The GHC runtime refers
to the number of Haskell threads that can run truly simultaneously
as the number of capabilities. We can query this value, and fork
threads which are bound to a particular capability:

getNumCapabilities :: ... => m Int
forkOn :: ... => Int -> m () -> m (ThreadId m)

The forkOn function interprets the capability number modulo
the value returned by getNumCapabilities.

Departure getNumCapabilities is not required to return a true
result. The testing instances return “2” despite executing everything
in the same capability, to encourage more concurrency. The IO
instance does return a true result.

Sometimes we just want the special case of evaluating some-
thing in a separate thread, for which we can use spawn (imple-
mented in terms of fork):

spawn :: ... => m a -> m (CVar m a)

This returns a CVar (Concurrent Variable), to which we can
apply readCVar, blocking until the computation is done and the
value is stored.

1 https://github.com/barrucadu/dejafu
2 To save on horizontal space, a MonadConc m => has been omitted from
type signatures.

142

https://github.com/barrucadu/dejafu

3.2 Mutable State
Threading by itself is not really enough. We need to be able to
communicate between threads: we’ve already seen an instance of
this with the spawn function.

The simplest type of mutable shared state provided is the CRef
(Concurrent Reference). CRefs are shared variables which can be
written to and read from:

newCRef :: ... => a -> m (CRef m a)
readCRef :: ... => CRef m a -> m a
modifyCRef :: ... => CRef m a -> (a -> (a, b)) -> m b
writeCRef :: ... => CRef m a -> a -> m ()

Departure IORef actions can be re-ordered[7], but this is not
the case for CRef actions. The modifyCRef function corre-
sponds to atomicModifyIORef, and writeCRef corresponds to
atomicWriteIORef.

As any thread can write at any time, we risk threads overwrit-
ing each other’s work! At least modifyCRef is atomic: no thread
can update it between the value being read and the new value being
stored, as could happen if readCRef and writeCRef were com-
posed. Even so, CRefs quickly fall down if we want to do anything
complicated. We need something more robust.

3.3 Mutual Exclusion
A CVar is a shared variable under mutual exclusion. It has two
possible states: full or empty. Writing to a full CVar blocks until
it is empty, and reading or taking from an empty CVar blocks until
it is full. There are also non-blocking functions which return an
indication of success:

putCVar :: ... => CVar m a -> a -> m ()
tryPutCVar :: ... => CVar m a -> a -> m Bool
readCVar :: ... => CVar m a -> m a
takeCVar :: ... => CVar m a -> m a
tryTakeCVar :: ... => CVar m a -> m (Maybe a)

Unfortunately, the mutual exclusion behaviour of CVars means
that computations can become deadlocked. For example, deadlock
occurs if every thread tries to take from the same CVar. The GHC
runtime can detect this (and will complain if it does), and so can
Déjà Fu in a more informative way, as we shall see in §4.

3.4 Software Transactional Memory
CVars are nice, until we need more than one, and find they need to
be kept synchronised. As we can only claim one CVar atomically,
it seems we need to introduce a CVar to control access to CVars!
This is unwieldy and prone to bugs.

Software transactional memory (STM) is the solution. STM
uses CTVars, or Concurrent Transactional Variables, and is based
upon the idea of atomic transactions. An STM transaction consists
of one or more operations over a collection of CTVars, where a
transaction may be aborted part-way through depending on their
values. If the transaction fails, none of its effects take place, and
the thread blocks until the transaction can succeed. This means we
need to limit the possible actions in an STM transaction, so we have
another typeclass:

import Control.Monad.STM.Class

CTVars always contain a value, as shown in the types of the
functions:

newCTVar :: MonadSTM s => a -> s (CTVar s a)
readCTVar :: MonadSTM s => CTVar s a -> s a
writeCTVar :: MonadSTM s => CTVar s a -> a -> s ()

If we read a CTVar and don’t like the value it has, the transaction
can be aborted, and the thread will block until any of the referenced
CTVars have been mutated:

retry :: MonadSTM s => s a
check :: MonadSTM s => Bool -> s ()

We can also try executing a transaction, and do something else
if it fails:

orElse :: MonadSTM s => s a -> s a -> s a

The nice thing about STM transactions is that they compose.
We can take small transactions and build bigger transactions from
them, and the whole is still executed atomically. This means we
can do complex state operations involving multiple shared variables
without worrying!

We have emphasised that STM transactions are atomic. The
function which atomically executes a transaction:

atomically :: ... => STMLike m a -> m a

Departure Every MonadConc has an associated MonadSTM,
whereas there is just one STM normally. This is so that STM trans-
actions can be tested without needing to bring IO into the test run-
ner. The IO MonadConc instance uses STM as its MonadSTM.

For example, suppose we have a collection of worker threads
each of which can either produce a result or fail. We might want
to block until either one completes successfully and kill the other
threads, or until all fail. We can implement this using CTMVars, an
analogue of CVars built from CTVars:

awaitResult :: MonadConc m
=> [(ThreadId m, CTMVar (STMLike m) (Maybe a))]
-> m (Maybe a)

awaitResult workers = do
out <- atomically $ do

progress <- mapM (tryReadCTMVar . snd) workers
let finished = catMaybes progress
case catMaybes finished of

(x:_) -> return $ Just x
[] -> check (length finished < length workers)

>> return Nothing
mapM_ (killThread . fst) workers
return out

Here tryReadCTMVar attempts to read from a CTMVar and, if
there is no value present, calls retry.

3.5 Exceptions
Exceptions are a way to bail out of a computation early. Whether
they’re a good solution to that problem is a question of style, but
they can be used to jump quickly to error handling code when
necessary. The basic functions for dealing with exceptions are:

catch :: ... => m a -> (e -> m a) -> m a
throw :: ... => e -> m a

Where throw causes the computation to jump back to the near-
est enclosing catch capable of handling the particular exception.
As exceptions belong to a typeclass, rather than being a concrete
type, different catch functions can be nested, to handle different
types of exceptions.

143

Departure The IO catch function can catch exceptions from
pure code. This is not true in general for MonadConc instances.
So some things which work normally may not work in testing, and
we risk false negatives. This is a small cost, however, as exceptions
from pure code are things like pattern match failures and evaluating
undefined, which are arguably bugs.

Exceptions can be used to kill a thread:

throwTo :: ... => ThreadId m -> e -> m ()
killThread :: ... => ThreadId m -> m ()

These functions block until the target thread is in an appropriate
state to receive the exception.

What if we don’t want our threads to be subject to destruction
in this way? A thread also has a masking state, which can be used
to block exceptions from other threads. There are three masking
states: unmasked, in which a thread can have exceptions thrown to
it; interruptible, in which a thread can only have exceptions thrown
to it if it is blocked; and uninterruptible, in which a thread cannot
have exceptions thrown to it. When a thread is started, it inherits
the masking state of its parent, and the forkWithUnmask function
forks a thread and passes it a function which can be used to execute
a subcomputation in the unmasked state. We can also execute a
subcomputation with a new masking state:

mask :: ... => ((forall a. m a -> m a) -> m b) -> m b
uninterruptibleMask

:: ... => ((forall a. m a -> m a) -> m b) -> m b
forkWithUnmask

:: ... => ((forall a. m a -> m a) -> m ())
-> m (ThreadId m)

STM can also use exceptions, with its throwSTM and catchSTM
functions. If an exception propagates uncaught to the top of a
transaction, that transaction is aborted.

4. Testing using Déjà Fu
Testing with Déjà Fu consists in writing a small concurrent compu-
tation to test, and some predicates over the return value and traces
produced. Predicates may be lazy: they need not examine the entire
output before determining whether the test has passed or failed.

import Test.DejaFu

runTest :: Eq a
=> Predicate a -> (forall t. Conc t a)
-> Result a

The abstract Conc t type is one of the instances of Monad-
Conc for testing purposes (there’s also ConcIO t for computations
which do IO). The locally quantified type t prevents mutable state
from leaking out of the computation, similarly to the ST monad.

type Predicate a
= [(Either Failure a, Trace)] -> Result a

data Result a = Result
{ _pass :: Bool
, _casesChecked :: Int
, _casesTotal :: Int
, _failures :: [(Either Failure a, Trace)]
} deriving (Show, Eq)

A Result consists of a Boolean flag indicating whether the test
passed, the number of results checked to arrive at that conclusion,
the total number of results, and a list of all failing cases.

Helper functions lift predicates over a single result to predicates
over the collection:

alwaysTrue
:: (Either Failure a -> Bool) -> Predicate a

somewhereTrue
:: (Either Failure a -> Bool) -> Predicate a

There are also variants which take binary predicates for check-
ing properties over the entire collection as a whole, for example:

alwaysSame :: Eq a => Predicate a
alwaysSame = alwaysTrue2 (==)

alwaysTrue2
:: (Either Failure a -> Either Failure a -> Bool)
-> Predicate a

somewhereTrue2
:: (Either Failure a -> Either Failure a -> Bool)
-> Predicate a

The functions alwaysTrue2 and somewhereTrue2 only check
the predicate between values adjacent in the result list. The order
of this list depends on the scheduling algorithm used, and so these
functions should only be used for properties which are symmetric
and transitive. There is also a collection of standard predicates, for
doing things like checking for the existence of deadlock.

For the common case of checking for determinism, deadlock
freedom, and proper exception handling, there is an autocheck
function:

autocheck :: (Eq a, Show a)
=> (forall t. Conc t a) -> IO Bool

Let’s see what we get from testing the example from the start of
this paper. We’ll have it return the value, rather than print it, though:

bad :: MonadConc m => m Int
bad = do
shared <- newCVar 0
fork . void $ swapCVar shared 1
fork . void $ swapCVar shared 2
readCVar shared

Firstly let’s put it through autocheck:

> autocheck bad
[pass] Never Deadlocks (checked: 23)
[pass] No Exceptions (checked: 23)
[fail] Consistent Result (checked: 1)
0 S0-------
2 S0----P2---S0---
1 S0----P1---S0---

False

Déjà Fu reports three distinct failures! Two failures are distinct
if they have different results, or the same result but one trace is not
a simplification of another. For each failure, the result is shown,
along with the trace that led to it. “Sx” means that thread “x” started
execution; “Px” means that thread “x” pre-empted the running
thread; and the number of dashes indicates how many steps each
thread ran for. So this output means that we get a “0” if there is no
pre-emption, a “1” if thread 1 pre-empts the initial thread before
the read, and a “2” if thread 2 pre-empts the initial thread before
the read.

This output is nice for automated test suites, but perhaps not so
friendly for interactive debugging. There are functions to run tests
and return a more detailed result:

> runTest alwaysSame bad
Result {_pass = False, _casesChecked = 1

, _casesTotal = 23, _failures = [...]}

144

The Result value tells us testing failed after looking at 1 case,
there are 23 cases in total, and there is a simplified list of failures.
These are quite long, so here is the second only:

(Right 2
, [(Start 0,[],New 1)

, (Continue,[],Put 1 [])
, (Continue,[],Fork 1)
, (Continue,[SwitchTo 1],Fork 2)
, (SwitchTo 2,[Continue,SwitchTo 1],Take 1 [])
, (Continue,[SwitchTo 0,SwitchTo 1],Put 1 [])
, (Continue,[SwitchTo 0,SwitchTo 1],Stop)
, (Start 0,[Start 1],Read 1)
, (Continue,[SwitchTo 1],Lift)
, (Continue,[SwitchTo 1],Stop)])

We have the result returned, and a log of what decision the
scheduler made at each step, what alternative decisions it could
have made, and what the thread did. Each thread and CVar (and
CRef/CTVar) has its own unique identifier. In particular, we can
see that when thread 2 pre-empted thread 0, it modified CVar 1,
and there is evidence to suggest that the final result was determined
by CVar 1 (as it was read just before the main thread terminated),
this should suggest to us that maybe CVar 1 is the culprit, and lead
us to look more closely at that area of the program.

It may seem difficult to keep track of which thread is which.
Studies have found[16] that many errors are exposed with as few
as two threads. This finding encourages us to write small test cases.
However, there could be an optional mechanism to assign names to
threads.

We can of course test STM transactions individually. The result
may be a success (along with the value returned), a failure due to a
retry, or a failure due to an uncaught exception:

import Test.DejaFu.STM
runTransaction :: (forall t. STMST t a) -> Result a

The abstract STMST t type is the testing implementation of
MonadSTM.

4.1 Testing Aids
Some other functions generically defined for the typeclass only
alter the running of the code during testing. They are provided to
make it easier to write good tests.

Firstly, there is concNoTest, used to indicate that a subcom-
putation already has its own tests, and so it should not be tested
again here. Specifically, the test runner executes the argument of
concNoTest atomically. This allows tests to compose without re-

peating work:

big :: MonadConc m => m Int
big = do

a <- _concNoTest little1
b <- _concNoTest little2
combine a b

If little1 and little2 already have their own tests, and have
been verified to work, there is no need to test them again when
testing big.

Secondly, there are cases where the main thread may be blocked
on some CVar or CTVar, to which no other thread has a reference.
This should cause immediate failure with deadlock as the reason.
By default Déjà Fu cannot detect deadlocks of this kind. However,
the user has the option to provide extra information, indicating
which shared variables a thread knows about:

bad :: MonadConc m Int
bad = do
_concAllKnown
a <- newEmptyCVar
b <- newEmptyCVar
fork $ do

_concKnowsAbout (Left a)
_concAllKnown
let loop = takeCVar a >> loop in loop

fork $ do
_concKnowsAbout (Left a)
_concAllKnown
let loop = putCVar a 1 >> loop in loop

takeCVar b

The main thread is blocked on “b”, to which neither of the other
two threads has a reference. By adding annotations, this can be de-
tected and reported. There are three annotations: concKnowsAbout
records that the current thread has a reference to a CVar or CTVar;
concForgets records that the current thread will never touch the

referenced CVar or CTVar again; and concAllKnown indicates
that all CVars or CTVars which were passed in to the thread have
been recorded. If every thread is in a known state, then detection
of non-global deadlock is enabled. Otherwise the example above
never terminates, as the two forked threads run forever, even though
the main thread can never progress.

Misuse of these aids can lead to invalid test results. In particular,
concNoTest should only be used for actions which involve no

shared variables from a larger scope. If two threads with a reference
to the same shared variable are executed under concNoTest, then
the test runner will not consider possible interleavings of those
threads.

4.2 IO
By itself, MonadConc cannot do IO. However, by adding in a
MonadIO context and applying liftIO as appropriate, concur-
rency can be separated from other IO, allowing testing.

However, once IO is involved, the test runner loses control
of what’s going on. If a thread, during some IO, blocks on the
action of another thread, this cannot be detected, and deadlock may
arise. Furthermore, it is assumed for testing that the only source
of nondeterminism is the scheduler (see §5). Any IO that is done
should be deterministic given the same set of scheduling decisions,
to not invalidate test results, although this is good practice in any
sort of testing. Finally, the test runner cannot pre-empt within
liftIO blocks, they should be as small as possible to avoid the
risk of obscuring bugs.

5. Implementation
Readers who just want to use the Déjà Fu library can skip over this
section and go straight to the example applications in §6.

5.1 Systematic Concurrency Testing
Systematic concurrency testing[16] (SCT) is a method for testing
concurrent programs which works by forcing a particular set of
scheduling decisions to be made. Different schedules can then be
explored in order to try to find bugs. It is systematic because the
order of exploration is generally not random, but follows some
deterministic search pattern.

SCT can be implemented by overriding the concurrency prim-
itives of the programming language, forcing all threads to run on
one controlling thread, and making scheduling decisions between
effectively-atomic blocks. An effectively-atomic block consists of
a number of thread-local actions followed by a single access to a
shared resource. This is preferable to exploring all possible points

145

for making scheduling decisions, as the order of interleaving of
thread-local operations cannot affect the final result.

There is some terminology associated with scheduling:

Blocked A thread awaiting access to a shared resource which is
currently unavailable.

Blocking An operation which may result in its thread becoming
blocked.

Pre-emption Pausing the execution of a thread which is not
blocked, and executing another in its place.

Pre-emption count The number of pre-emptions in a schedule.

One common SCT algorithm is pre-emption bounding[13],
where all schedules with a fixed pre-emption count are explored. A
variant is iterative pre-emption bounding, where all schedules with
a count of 0, and then 1, and so on up to the limit, are explored. A
common bound chosen is 2, as empirical studies have found that
many concurrency errors arise within that limit[13][16].

Another common algorithm is delay bounding[4], which ex-
plores schedules with a fixed number of deviations from an oth-
erwise deterministic scheduler. This tends to perform about as well
as pre-emption bounding in terms of finding bugs[16] although the
number of schedules to explore grows slower, leading to more rapid
testing. Despite this, it is not used in Déjà Fu as it is difficult to in-
tuitively relate the lack of bugs found to some sort of correctness
criteria for the program, unlike pre-emption bounding which has a
direct relation to the complexity of the run-time behaviour.

5.2 Primitive Actions and Threading
The Conc and ConcIO monads represent threads as continuations
over primitive actions, with the entire computation actually hap-
pening in a single Haskell thread. The primitives actions are shown,
in abbreviated form, in Figure 1. Execution is more similar to co-
operative multitasking than pre-emptive multitasking on a single
processor. If executing a primitive action fails to terminate, the en-
tire computation would lock up.

There are also a few other primitives omitted here for brevity,
which are introduced by evaluating other primitives (for example,
resetting the masking state). Execution happens in the context of an
underlying monad, which implements mutable variables. For Conc
t this is ST t, hence the type parameter. For ConcIO t it is IO, the
parameter is retained to keep types similar.

Threads are stored in a map, from thread IDs to a record of the
current state:

data Thread ... = Thread
{ _continuation :: Action ...
, _blocking :: Maybe BlockedOn
, _handlers :: [Handler ...]
, _masking :: MaskingState
}

Evaluation is defined as repeating a single-step function until
the main thread terminates, or deadlock is detected.

5.3 Shared State and Blocking
CRefs and CVars are both implemented in terms of the reference
type of the underlying monad, as a pair (id, value), where CVars
have a Maybe value.

data BlockedOn =
OnCVarFull CVarId

| OnCVarEmpty CVarId
| OnCTVar [CTVarId]
| OnMask ThreadId deriving Eq

data Action ... =
AFork thread_action action

| AMyTId (thread_id -> action)
| APut cvar new_value action
| ATryPut cvar new_value (Bool -> action)
| AGet cvar (value -> action)
| ATake cvar (value -> action)
| ATryTake cvar (Maybe value -> action)
| AReadRef cref (value -> action)
| AModRef cref function (result -> action)
| AAtom stm_action (result -> action)
| ANew action
| ANewRef action
| ALift (underlying_monad action)
| AThrow SomeException
| AThrowTo thread_id SomeException action
| ACatching handler action (result -> action)
| AMasking mask_state action (result -> action)
| AStop

data STMAction ... =
ACatch action handler (result -> action)

| ARead ctvar (value -> action)
| AWrite ctvar new_value action
| AOrElse action action (result -> action)
| ANew action
| ALift (underlying_monad action)
| AThrow SomeException
| ARetry
| AStop

Figure 1: Primitive actions

When a CVar is accessed, the running thread is blocked if the
CVar is in an inappropriate state. Otherwise the action of the thread
is replaced with the relevant continuation. If the CVar has been
mutated, then all threads blocked on reading that CVar (if it was
put in to) or writing (if it was taken from) are unblocked. This
unblocking behaviour is slightly different to MVars, where the
order of awakening is FIFO.

The implementation of manipulating thread block statuses is
shown in Figure 2. Note the special case in wake for being blocked
on a collection of CTVars: if there is any intersection between the
lists of CTVars, the thread is woken.

5.4 Exceptions
A thread has a stack of exception handlers. Upon entering a catch,
the handler is pushed to the stack, and a primitive action to pop
it is inserted at the end of the enclosed action. A handler, when
invoked, replaces the action of the thread entirely, jumping to the
continuation of the catch after the programmer-supplied function
terminates:

data Handler ... = forall e. Exception e
=> Handler (e -> Action ...)

Upon evaluating a throw, the exception handler stack is popped
until a handler capable of handling the exception is reached. The
action of the thread is then replaced with the handler, and the new
stack is stored. If no handler is found, the thread is killed. If this is
the main thread, the entire computation terminates with an error.

When a mask is entered, a primitive action to restore the mask-
ing state is added on to the end of the subcomputation.

146

block :: BlockedOn -> ThreadId -> Threads n r s
-> Threads n r s

block blockedOn = M.alter doBlock
where
doBlock (Just thread) = Just $
thread { _blocking = Just blockedOn }

wake :: BlockedOn -> Threads n r s
-> (Threads n r s, [ThreadId])

wake blockedOn threads =
(M.map unblock threads
, M.keys $ M.filter isBlocked threads)

where
unblock t
| isBlocked t = t { _blocking = Nothing }
| otherwise = t

isBlocked t = case (_blocking t, blockedOn) of
(Just (OnCTVar ctvids), OnCTVar blockedOn’)

-> ctvids ‘intersect‘ blockedOn’ /= []
(theblock, _) -> theblock == Just blockedOn

Figure 2: Manipulating thread blocks

5.5 Software Transactional Memory
STM is implemented in terms of its own primitive actions, also
shown in Figure 1. CTVars are implemented in terms of STRefs, if
using Conc, or IORefs, if using ConcIO.

As STM transactions are atomic, the implementation is quite
simple. It repeats a single-step function until the transaction reaches
a fixed point: an ARetry, AThrow, or AStop action. Only the AStop
action indicates successful termination. If a transaction terminates
due to an ARetry action, the thread is blocked.

Executing an STM transaction returns a result (or indication of
failure), a list of CTVars written to (if success) or read from (if
failure), and an action in the underlying monad to undo the effects
of the transaction.

An ACatch action is implemented by simply executing the
entire subcomputation and pattern matching on the return value:
if it is a success, the value is returned; if it is an exception of the
appropriate type, it is passed to the handler; and if it is a different
exception, it is propagated upwards.

5.6 Detecting Deadlock
Deadlock detection is implemented in GHC as part of garbage
collection: if a thread is blocked on a variable to which no running
thread has a reference, that thread is deadlocked. Unfortunately,
the garbage collector is beyond the reach of Déjà Fu (and even if
it wasn’t, would require everything to be in IO). So by default in
Déjà Fu the only deadlock detection is global: where every thread
is blocked simultaneously.

Deadlock where the main thread is blocked on a shared variable
for which no other thread has a reference is optionally implemented
with special conc functions. See §4. These record for each thread
which shared variables are known about, allowing largely the same
approach as the GC one if the state of every thread is fully known.
However if these functions are incorrectly used, there may be false
results of testing.

5.7 Schedule Bounding
Testing in Déjà Fu is, by default, implemented using pre-emption
bounding with a bound of two. Other bounds can be set. Also,

enough of the internals are exposed such that other SCT runners
could be implemented.

An execution is parameterised with a deterministic scheduler
which may have some state. The execution returns the result, an
execution trace, and the final scheduler state. Using the scheduler
state, we can implement a very simple scheduler which takes some
list of initial decisions to make (a schedule prefix), and which
makes non-pre-emptive decisions after that point.

Schedule bounding generates new schedules from a schedule
prefix and suffix. Given a schedule suffix, there are functions to
generate siblings and offspring. A sibling is a new partial prefix
which, when appended to any prefix at all, does not result in a
prefix in a different bounding level. An offspring is a new partial
prefix which, when appended to any prefix at all, results in a prefix
in the next bounding level up. In the case of pre-emption bounding,
siblings are partial prefixes with no pre-emptions, and offspring are
partial prefixes with one pre-emption, so producing a prefix with
n+ 1 pre-emptions when appended to the original prefix.

Example

prefix = [Start 0]
suffix = [(Continue, [], Fork 1)

,(Continue, [SwitchTo 1], Stop)]

Given this prefix and suffix, under pre-emption bounding there
are no siblings, as the only available alternative choice would intro-
duce a pre-emption. There is one offspring, by making the alterna-
tive decision at step 2 of the suffix:

siblings suffix == []
offspring suffix == [[Continue, SwitchTo 1]]

This offspring would not actually be generated, however. Pre-
emptions are only introduced around actions such as access to a
CVar, where pre-emption may affect the final result.

This splitting into prefixes and suffixes makes it easy to prevent
duplicate schedules. The schedule bounding runner stops generat-
ing offspring when the bound is reached, and explores schedules
in a mostly breadth-first fashion. Furthermore, there is an option to
explore all schedules.

Also implemented is a delay-bounding scheduler. A delay is
a deviation from an otherwise deterministic scheduler. So delay-
bounding has the advantage that the number of schedules grows
more slowly than pre-emption bounding: there is exactly one sched-
ule with a delay count of 0, but potentially many with a pre-emption
count of 0. The default testing mechanisms use pre-emption bound-
ing because the guarantees that delay-bounding gives are influ-
enced by the choice of scheduler, whereas pre-emption bounding
gives a global property of all schedules. The two methods tend to
perform about the same in terms of bug-finding ability[16].

6. Examples
Four examples are discussed, two of which are external libraries.
The first is a variation of an example in Parallel and Concurrent
Programming in Haskell[10] of a concurrent message logger, into
which a bug has intentionally been introduced. The entire program
is presented, as it is small. Then two known bugs in the auto-update
package are reproduced, and one of the schedulers in the monad-
par package is tested. The last is a bug that arose, unintentionally,
in the implementation of a library for performing search problems
in parallel, where an incorrect use of CTMVars allowed a user of
the library to obtain an incomplete result.

147

6.1 Message Logger
Suppose we want a concurrent message logger with the following
properties:

• The logger can be sent a message, or it can be told to stop; when
told to stop, all messages sent before that point are returned to
the thread which stopped it.

• Messages from the same thread should be in order, but mes-
sages from different threads may be in any order.

Firstly, we shall define the types we’re going to use:

data Logger m = Logger (CVar m LogCommand)
(CVar m [String])

data LogCommand = Message String | Stop

initLogger :: MonadConc m => m (Logger m)
initLogger = do

cmd <- newEmptyCVar
log <- newCVar []
let l = Logger cmd log
fork $ logger l
return l

Now we need to be able to send a message to the logger. As
CVars are being used, these functions will block if there is already
a command there. We need not worry about threads overwriting
each other’s commands.

logMsg :: MonadConc m => Logger m -> String -> m ()
logMsg (Logger cmd _) = putCVar cmd . Message

logStop :: MonadConc m => Logger m -> m [String]
logStop (Logger cmd log) = do

putCVar cmd Stop
readCVar log

Finally, we have the main loop of the logger. It blocks on taking
a command. If the communication is a new message, the logger
appends the message to the list and loops, otherwise it terminates.

logger :: MonadConc m => Logger m -> m ()
logger (Logger cmd log) = loop where

loop = do
command <- takeCVar cmd
case command of

Message str -> do
strs <- takeCVar log
putCVar log $ strs ++ [str]
loop

Stop -> return ()

If at least two threads attempt to communicate with the logger
after it has been stopped, one will block indefinitely. We assume
one supervising process which orchestrates the concurrency (for
example, a managing thread which starts a logger and a collection
of worker threads, which report their status to the log), so this isn’t
a problem.

The actual bug is less obvious, so let’s write a simple test case
and see what autocheck does for us:

test :: MonadConc m => m[(ThreadId m, String)]
test = do

l <- initLogger
j1 <- spawn (logMsg l "a" >> logMsg l "b")
j2 <- spawn (logMsg l "c" >> logMsg l "d")
readCVar j1; readCVar j2
logStop l

Here we start a logger, fork off two threads which each write
two messages to the log, wait for them to terminate, and stop the
logger. We should always see 4 log entries, with “a” before “b”, “c”
before “d”, but all other orderings.

Running with autocheck, we see1 the following:

> autocheck test
[pass] Never Deadlocks (checked: 104626)
[pass] No Exceptions (checked: 104626)
[fail] Consistent Result (checked: 5)
["a","b","c"] S0---------S2-----S3---S1----S2--

-S1----S3---S1----S3---S1-P0------
["a","b","c","d"] S0---------S2-----S1----S2---

S1----S3-----S1----S3---S1----S0------
["a","b","c"] S0---------S2-----S1----S2---S1--

--S3-----S1----S3---S0---S1-P0----
["a",c","b"] S0---------S2-----S1----S3-----S2-

S1----S2---S1----S3---S1-P0------
["a","c","b","d"] S0---------S2-----S1----S3---

--S1----S2---S1----S3---S1----S0------
...

False

Well, we found a bug: sometimes the last message gets missed.
Also, the cases where the last message is dropped all appear to
end with a pre-emption of thread 1 by thread 0. As threads are
numbered sequentially in order of creation, thread 0 is the initial
thread and thread 1 is the logger thread. We can restrict the results
by checking a different condition:

> dejafu test
("4 Values"
, alwaysTrue $ \(Right xs) -> length xs == 4)

[fail] 4 Values (checked: 16)
["a","b","c"] S0---------S2-----S3---S1----S2--

-S1----S3---S1----S3---S1-P0------
["a","b","c"] S0---------S2-----S1----S2---S1--

--S3-----S1----S3---S0---S1-P0----
["a","c","b"] S0---------S2-----S1----S3-----S2

-S1----S2---S1----S3---S1-P0------
["a","c","d"] S0---------S2-----S1----S3-----S1

----S3---S2-S1----S2---S1-P0------
["a","c","b"] S0---------S2-----S1----S3-----S1

----S2---S1----S3---S0---S1-P0----
...

False

The pattern continues. Upon a closer inspection of logger, we
can see that if it is pre-empted between the takeCVar cmd and the
takeCVar log, a stop command can be written without blocking,
and an incomplete log returned. One solution would be to replace
the first takeCVar with a readCVar, and only empty the CVar
when the processing of the command is complete.

6.2 The auto-update Package
The auto-update2 library runs tasks periodically, but only if needed.
For example, a single worker thread may get the time every
second and store it to a shared IORef, rather than have many
threads starting within a second of each other all get the time
independently[15]. Despite the core functionality being very sim-
ple, two race conditions were noticed by users inspecting the code
in October 2014.

1 Traces have been broken into multiple lines here, but the tool does not do
any output wrapping by itself.
2 https://hackage.haskell.org/package/auto-update

148

https://hackage.haskell.org/package/auto-update

data UpdateSettings a = UpdateSettings
{ updateFreq :: Int
, updateSpawnThreshold :: Int
, updateAction :: IO a
}

defaultUpdateSettings :: UpdateSettings ()
defaultUpdateSettings = UpdateSettings

{ updateFreq = 1000000
, updateSpawnThreshold = 3
, updateAction = return ()
}

mkAutoUpdate :: UpdateSettings a -> IO (IO a)
mkAutoUpdate us = do

currRef <- newIORef Nothing
needsRunning <- newEmptyMVar
lastValue <- newEmptyMVar

void $ forkIO $ forever $ do
takeMVar needsRunning

a <- catchSome $ updateAction us

writeIORef currRef $ Just a
void $ tryTakeMVar lastValue
putMVar lastValue a

threadDelay $ updateFreq us

writeIORef currRef Nothing
void $ takeMVar lastValue

return $ do
mval <- readIORef currRef
case mval of

Just val -> return val
Nothing -> do

void $ tryPutMVar needsRunning ()
readMVar lastValue

catchSome :: IO a -> IO a
catchSome act = catch act $

\e -> return $ throw (e :: SomeException)

Figure 3: auto-update implementation

The entire implementation, excluding comments and imports,
is reproduced in Figure 3. The mkAutoUpdate function spawns
a worker thread, which performs the update action at the given
frequency, only if the needsRunning flag has been set. It returns
an action to attempt to read the current result, demanding one be
computed and blocking until it has been done if there isn’t one.

The simpler race condition occurs if the reading thread is pre-
empted by the worker thread after putting into needsRunning,
and does not run again until after the delay has passed. In this
case the worker thread can become blocked on taking for a second
time from needsRunning. The reader thread will be unable to read
from lastValue as the worker thread emptied it as the last action
it performed. The transformation to the MonadConc typeclass is
mostly simple, however the threadDelay must be wrapped inside
a call to liftIO. The first race condition can be exhibited with the
following test:

test :: MonadConc m => m ()
test = do
auto <- mkAutoUpdate defaultUpdateSettings
auto

The output is as we would expect, knowing the bug is present:

> autocheck test
[fail] Never Deadlocks (checked: 1)

[deadlock] S0-------S1---------S0-
[pass] No Exceptions (checked: 17)
[fail] Consistent Result (checked: 4)

() S0-------S1------P0---
[deadlock] S0------P1---------S0-
() S0-------S1-------P0---

False

This deadlock may arise in any use of the library, as it depends
only on the timing of the delay, and not on the computation per-
formed.

The more complex race condition arises if readMVar isn’t
atomic, as in GHC versions before 7.8. In this case an old value
can be returned if the read of lastValue is pre-empted between
the internal take and put operations, as shown in this test:

test :: MonadConc m => m Int
test = do
var <- newCRef 0
auto <- mkAutoUpdate $ defaultUpdateSettings

{ updateAction = modifyCRef var (\x -> (x+1, x)) }

auto
auto

Here auto is called twice to update the counter variable twice.
Actually reproducing this bug requires a new readCVar function
be written, as the library does not currently provide an option for
non-atomic reads. Exhibiting this bug requires three pre-emptions:

> dejafus’ 3 test [("Consistent Result", alwaysSame)]
[fail] Consistent Result (checked: 5)

0 S0--------S1-------P0-----
[deadlock] S0-------P1----------S0-
1 S0--------S1-------P0--P1---S0---S1----

---P0----
1 S0--------S1-------P0--P1---S0---S1----

----P0----
0 S0--------S1--------P0--------
...

False

Despite the bugs being rather simple, one not requiring any pre-
emptions at all to trigger, they both arose in practice. How easy it
is to make mistakes when implementing concurrent programs!

6.3 Parallel Search
The Search Party1 library supports speculative parallelism in
generate-and-test search problems. It is motivated by the con-
sideration that: if multiple acceptable solutions exist, it may not
matter which one is returned. Initially, only single results could
be returned, but support for returning all results was later added,
incorrectly, introducing a bug.

The key piece of code causing the problem was this part of the
worker loop:

1 https://github.com/barrucadu/search-party

149

https://github.com/barrucadu/search-party

case maybea of
Just a -> do
atomically $ do

val <- tryTakeCTMVar res
case val of
Just (Just as) -> putCTMVar res $ Just (a:as)
_ -> putCTMVar res $ Just [a]

unless shortcircuit $
process remaining res

Nothing -> process remaining res

Here maybea is a value indicating whether the computation
just evaluated was successful. The intended behaviour is that, if
a computation is successful its result is added to the list in the
res CTMVar. This CTMVar is exposed indirectly to the user of
the library, as it is blocked upon when the final result of the search
is requested.

There are some small tests in Search Party, verifying that dead-
locks and exceptions don’t arise, and that results are as expected.
Upon introducing this new functionality, tests began to fail with
differing result lists returned for different schedules, prompting the
test:

checkResultLists :: Eq a => Predicate [a]
checkResultLists = alwaysTrue2 check

where
check (Right as) (Right bs) =
as ‘elem‘ permutations bs

check a b = a == b

Given this predicate, we can very clearly see the problem:

> dejafu (runFind $ [0..2] @! const True)
("Result Lists", checkResultLists)

[fail] Result Lists (checked: 46)
Just [2,1] S0----S1-----S2-P3-----------S0----
Just [0,2,1] S0----S1-----S2-P3-----------S2---
---S0----

Just [2,1] S0----S1-----S2--P3-----------S0----
Just [0,2,1] S0----S1-----S2--P3-----------S2--
---S0----

Just [2,1] S0----S1-----S2---P3-----------S0----
...

False

The problem was a lack of any indication that a list-producing
computation had finished. As results were written directly to the
CTMVar, partial result lists could be read depending on how the
worker threads and the main thread were interleaved.

In this case, fixing the failure did not require any interactive de-
bugging. Only one place had been modified in introducing the new
functionality, and the bug was found by re-reading the code with
the possibility of error in mind.. However, the ability to produce a
test case which reliably reproduces the problem gives confidence
that it will not be accidentally reintroduced.

6.4 The Par Monad
As mentioned in Section §2.2, the Par monad allows for determinis-
tic data-flow parallelism in Haskell. The library provides a number
of different schedulers, the default being the “trace” scheduler. Due
to reports of potential deadlocks with the “direct” scheduler from a
year ago[1], it was tested with Déjà Fu.

To reduce the effort in modifying the code, only the direct
dependencies of the “direct” scheduler were modified, the rest of
the library being left unchanged. This resulted in four files needing

change: two from the abstract-deque1 package and two from the
monad-par2 package.

Converting monad-par to use Déjà Fu was quite simple. All rel-
evant types were parametrised by the underlying monad, all func-
tions had a MonadConc context added, functions were swapped for
their Déjà Fu alternatives, and a runPar’ function was added:

runPar’ :: MonadConc m => Par m a -> m a

Some simplifications were made in the conversion process:

• Par normally uses the mwc-random3 package when performing
its internal scheduling. This was initially replaced with a con-
stant function, and then a StdGen.

• Behaviour of the Par scheduler is configured by cpp, but only
the default configuration was tested.

Figure 4 shows the original and converted scheduler initialisa-
tion code. As can be seen, they are very similar, even though this is
a core component of a rather sophisticated library, where the types
have been changed.

Converting the abstract-deque package proved a little more
challenging, as the typeclass interface requires knowledge of both
the queue type and the monad results are produced in. This issue
was solved by use of type families:

class MonadConc (MConc d) => DequeClass d where
type MConc d :: * -> *

newQ :: MConc d (d elt)
...

This solution is not ideal as it adds explicit knowledge of Mon-
adConc to the DequeClass typeclass, but it suffices for testing pur-
poses.

With the constant value ‘PRNG’, a deadlock was discovered. It
only arises after 200 queries. Given that the range of values is from
0 to the number of capabilities, and the probability is uniformly dis-
tributed, the probability of an actual deadlock is about 4× 10−121

on a quad-core computer. No deadlocks were discovered when us-
ing the StdGen generator, with a variety of initial seeds tried. If
there is still a deadlock, it may require more than 2 capabilities to
manifest.

7. Related Work
Pre-emption bounding testing tools exist for both C[17] and Java4

at least. SCT in Java is particularly nice, as the bytecode can be
instrumented to support SCT at runtime, by the test runner. This
frees the programmer from the need to structure their code in such
a way to support SCT, they can just program as they have always
done. This also allows legacy concurrent applications to be tested
easily.

PULSE[3] is a concurrency testing tool for Erlang, where pro-
cesses are synchronised by communicating with a scheduler pro-
cess, and QuickCheck is used for schedule generation. PULSE sup-
ports automatic code instrumentation to enable this style of test-
ing. As Erlang processes may be distributed, pre-emption bounding
may not be suitable, as it assumes everything is executing on a sin-
gle processor. There has been work on Erlang-style concurrency for
Haskell[5]. It seems to be little used, but in this case a PULSE-style
approach may be better.

1 https://hackage.haskell.org/package/abstract-deque
2 https://hackage.haskell.org/package/monad-par
3 https://hackage.haskell.org/package/mwc-random
4 LazyLocks (Paul Thomson), to appear.

150

https://hackage.haskell.org/package/abstract-deque
https://hackage.haskell.org/package/monad-par
https://hackage.haskell.org/package/mwc-random

makeScheds :: Int -> IO [Sched]
makeScheds main = do
caps <- getNumCapabilities
workpools <- replicateM caps R.newQ
rngs <- replicateM caps

(Random.create >>= newHotVar)
idle <- newHotVar []

sessionFinished <- newHotVar False
let sess = [Session baseSessionID sessionFinished]
sessionStacks <- mapM newHotVar

(replicate caps sess)
activeSessions <- newHotVar S.empty
sessionCounter <- newHotVar (baseSessionID + 1)
let allscheds =

[Sched { no=x, idle, isMain=(x==main),
workpool=wp, scheds=allscheds,
rng=rng, sessions=stck,
activeSessions=activeSessions,
sessionCounter=sessionCounter

}
| x <- [0 .. caps-1]
| wp <- workpools
| rng <- rngs
| stck <- sessionStacks

]
return allscheds

Original

makeScheds :: MonadConc m => Int -> m [Sched m]
makeScheds main = do

caps <- getNumCapabilities
workpools <- replicateM caps R.newQ
rngs <- replicateM caps

(newHotVar (mkStdGen 0))
idle <- newHotVar []

sessionFinished <- newHotVar False
let sess = [Session baseSessionID sessionFinished]
sessionStacks <- mapM newHotVar

(replicate caps sess)
activeSessions <- newHotVar S.empty
sessionCounter <- newHotVar (baseSessionID + 1)
let allscheds =

[Sched { no=x, idle, isMain=(x==main),
workpool=wp, scheds=allscheds,
rng=rng, sessions=stck,
activeSessions=activeSessions,
sessionCounter=sessionCounter

}
| x <- [0 .. caps-1]
| wp <- workpools
| rng <- rngs
| stck <- sessionStacks

]
return allscheds

Déjà Fu

Figure 4: Par “direct” scheduler initialisation

Whilst the MonadConc typeclass was structured to be similar
to the standard concurrency primitives, the inspiration for this ap-
proach, and the basic idea behind how to do SCT in Haskell, was
provided by a blog post[2]. However, both the family of primitives
and the approach to testing have been significantly advanced.

8. Conclusions & Further Work
Although a commonly reported experience amongst Haskell pro-
grammers is that “if it compiles, it works”, there are times where
it does not work. A number of profiling and debugging tools ex-
ist, typically requiring special runtime support. Concurrency is a
particularly difficult area to get right, as everyone who has had
to move outside the realm of guaranteed determinism will know.
Yet there are no debugging tools for concurrent Haskell programs
(ThreadScope[8] is a profiling tool, and merely gathers information
on sample executions). This paper contributes such a tool, at the
cost of a programmer having to use a generalisation of the familiar
concurrency abstraction.

Is this cost too high? Programmers are notoriously unwilling to
restructure their code to allow for easier analysis or testing, unless
the current situation is truly unbearable. It is generally regarded in
the Haskell community as good practice to write IO-using functions
as thin wrappers around calls to pure code. This practice should
limit the amount of change needed. The MonadConc and Monad-
STM interfaces have been kept intentionally very similar to the IO
and STM interfaces. Typically all that a programmer needs to do is
to change some imports, some names, and a few type signatures.

It is impossible in the current implementation to include func-
tions like threadDelay, as testing assumes that any nondetermin-
ism is due to the scheduler. Causing a thread to sleep is a notori-
ously nondeterministic operation, as the actual amount of time slept

depends partly on the operating system’s scheduler, which remains
out of reach.

If a thread enters an infinite loop in a primitive action call, the
entire test runner will lock up, even if that would not happen when
executing normally. This is because the test runner cannot do things
on a granularity smaller than one primitive action.

Despite these limitations, our tool solves a problem, and makes
writing reliable Haskell programs a little easier.

We implemented a library for fast parallel search on top of this
abstraction, and some shortcomings were identified and rectified.
In particular, there was originally no CRef type, as IORefs opera-
tions can potentially be re-ordered[7]. However, IORefs with non-
reorderable updates turned out to be exactly the abstraction needed
for Search Party’s work stealing scheduler, and so they were added.

More could be done. For example:

• Swapping out the regular concurrency primitives for the Mon-
adConc primitives could be done at compile- or link-time, as a
GHC plugin, rather than at the level of code. This would allow
testing of legacy code, and also free the programmer from need-
ing to modify their code. However, it would require recompiling
all dependencies with this functionality enabled.

• Dynamic partial-order reduction (DPOR)[6] is a technique for
dynamically deciding which traces will not be interesting based
on thread interactions, and so greatly reducing the search space.
This would increase testing performance, and make feasible the
testing of large programs.

• In practice, schedulers are biased towards a particular subset of
the possible schedules. They may try to guarantee fairness, for
example. At the cost of less complete results, schedules which
are not sufficiently fair could be ignored, reducing the search
space.

151

References
[1] Parallel and Concurrent Programming in Haskell (online version,

part of Atlas beta), 2014. URL https://www.reddit.com/
r/haskell/comments/1iwr7x/parallel_and_concurrent_
programming_in_haskell/cb8x76p.

[2] Ankuzik. Haskell. Testing a Multithreaded Applica-
tion, 2014. URL http://kukuruku.co/hub/haskell/
haskell-testing-a-multithread-application.

[3] K. Claessen, M. Palka, N. Smallbone, J. Hughes, H. Svensson, T. Arts,
and U. Wiger. Finding race conditions in Erlang with QuickCheck
and PULSE. In Proceedings of the 14th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’09, pages 149–160.
ACM, 2009.

[4] M. Emmi, S. Qadeer, and Z. Rakamarić. Delay-bounded Schedul-
ing. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’11, pages
411–422. ACM, 2011.

[5] J. Epstein, A. P. Black, and S. Peyton-Jones. Towards Haskell in the
cloud. In Proceedings of the 4th ACM Symposium on Haskell, Haskell
’11, pages 118–129. ACM, 2011.

[6] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for
model checking software. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’05, pages 110–121. ACM, 2005.

[7] GHC Base Libraries. Data.IORef, 2015. URL https:
//hackage.haskell.org/package/base-4.7.0.2/docs/
Data-IORef.html#g:2.

[8] D. Jones Jr, S. Marlow, and S. Singh. Parallel performance tuning
for Haskell. In Proceedings of the 2nd ACM SIGPLAN symposium on
Haskell, pages 81–92. ACM, 2009.

[9] L. Kuper, A. Todd, S. Tobin-Hochstadt, and R. R. Newton. Taming the
parallel effect zoo: Extensible deterministic parallelism with LVish. In

Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 2–14. ACM, 2014.

[10] S. Marlow. Parallel and Concurrent Programming in Haskell: Tech-
niques for Multicore and Multithreaded Programming. O’Reilly Me-
dia, 2013. ISBN 9781449335922.

[11] S. Marlow, P. Maier, H.-W. Loidl, M. K. Aswad, and P. Trinder. Seq
No More: Better Strategies for Parallel Haskell. In Proceedings of the
Third ACM Haskell Symposium on Haskell, Haskell ’10, pages 91–
102. ACM, 2010.

[12] S. Marlow, R. Newton, and S. Peyton Jones. A Monad for Determinis-
tic Parallelism. In Proceedings of the 4th ACM Symposium on Haskell,
Haskell ’11, pages 71–82. ACM, 2011.

[13] M. Musuvathi and S. Qadeer. Iterative Context Bounding for System-
atic Testing of Multithreaded Programs. In Proceedings of the 2007
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’07, pages 446–455. ACM, 2007.

[14] E. Scholz. A Concurrency Monad Based on Constructor Primitives,
or, Being First-Class is Not Enough. Freie Univ., Fachbereich Mathe-
matik, 1995.

[15] M. Snoyman. Announcing auto-update, 2014. URL http://www.
yesodweb.com/blog/2014/08/announcing-auto-update.

[16] P. Thomson, A. F. Donaldson, and A. Betts. Concurrency Testing
Using Schedule Bounding: an Empirical Study. In Proceedings of the
19th ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 15–28. ACM, 2014.

[17] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: A
Coverage-driven Testing Tool for Multithreaded Programs. In Pro-
ceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’12,
pages 485–502. ACM, 2012.

152

https://www.reddit.com/r/haskell/comments/1iwr7x/parallel_and_concurrent_programming_in_haskell/cb8x76p
https://www.reddit.com/r/haskell/comments/1iwr7x/parallel_and_concurrent_programming_in_haskell/cb8x76p
https://www.reddit.com/r/haskell/comments/1iwr7x/parallel_and_concurrent_programming_in_haskell/cb8x76p
http://kukuruku.co/hub/haskell/haskell-testing-a-multithread-application
http://kukuruku.co/hub/haskell/haskell-testing-a-multithread-application
https://hackage.haskell.org/package/base-4.7.0.2/docs/Data-IORef.html#g:2
https://hackage.haskell.org/package/base-4.7.0.2/docs/Data-IORef.html#g:2
https://hackage.haskell.org/package/base-4.7.0.2/docs/Data-IORef.html#g:2
http://www.yesodweb.com/blog/2014/08/announcing-auto-update
http://www.yesodweb.com/blog/2014/08/announcing-auto-update

	Introduction
	Contributions
	Roadmap

	Deterministic Parallelism and Concurrency in Haskell
	The Eval Monad
	The Par Monad
	LVish

	Déjà Fu: Concurrency and Haskell Revisited
	Threads
	Mutable State
	Mutual Exclusion
	Software Transactional Memory
	Exceptions

	Testing using Déjà Fu
	Testing Aids
	IO

	Implementation
	Systematic Concurrency Testing
	Primitive Actions and Threading
	Shared State and Blocking
	Exceptions
	Software Transactional Memory
	Detecting Deadlock
	Schedule Bounding

	Examples
	Message Logger
	The auto-update Package
	Parallel Search
	The Par Monad

	Related Work
	Conclusions & Further Work

