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Abstract

Out of work in the formal verification and model checking field has grown the topic of
systematic concurrency testing (SCT), also known as stateless model checking. This technique allows
the reliable, deterministic, and rigorous testing of concurrent programs, and has enjoyed some
success in the imperative and object-oriented settings. We propose that the functional world
could also benefit from systematic concurrency testing, as GHC Haskell in particular provides
a very rich set of concurrency primitives.

We have developed a library for writing testable concurrent Haskell programs, using a
typeclass-abstraction to select based on the context of use the concrete implementation to use:
the primitives provided by the run-time system, or emulated versions provided as part of a
testing framework.

This report discusses the design and implementation of this library, called Déjà Fu, including
case studies and further developments from the initial version presented at the 2015 Haskell
Symposium.

https://github.com/barrucadu/dejafu
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1 introduction

[Déjà Fu is] A martial art in which the user’s limbs move in time as well as space, [. . . ] It is
best described as “the feeling that you have been kicked in the head this way before”.

– Terry Pratchett, Thief of Time

Concurrency is notoriously difficult to get right [Yang et al., 2013], sometimes with dire
consequences [Leveson and Turner, 1993]. The problem largely stems from the nondetermin-
ism of scheduling: the same program with the same inputs may produce different results
depending on the schedules chosen at execution time. This makes it difficult to use traditional
testing techniques with concurrent programs, which rely on the result of executing a test to
be deterministic. So-called “Heisenbugs” make it difficult to be confident of the correctness of
concurrent programs: no bug has been observed during the testing process, but how do we
know that there aren’t any?

Despite the difficulty, concurrency is important for producing many real-world applications.
For example, applications with a lot of input and output can be more responsive by executing
I/O asynchronously. Concurrency is a useful program structuring technique, and it is here to
stay.

There are now a few well-known techniques to avoid concurrency bugs, such as protecting
mutable state with locks, and acquiring locks in a consistent order. Exercises like the Dining
Philosophers [Dijkstra, 1971] and the Santa Claus Problem [Trono, 1994] allow programmers
to explore these topics in small well-understood settings. However, as systems grow, it be-
comes difficult to think about how different components interact, and it is easy to slip up and
introduce a bug.

1.1 Parallelism vs Concurrency

It is worth clarifying at this early stage some terminology which will be frequently used
throughout this report:

Concurrency
A programming methodology, using concepts such as threads, locks, and mutable vari-
ables to structure programs.

Parallelism
An aspect of an implementation, where a multiplicity of hardware components are used
to execute distinct pieces of code simultaneously.

Concurrency does not require parallelism, as demonstrated by the single-core, single-processor
computers of yore. Similarly, parallelism does not require concurrency, as demonstrated by
the data-parallel x86 assembly instructions such as PMULHUW, which computes an element-wise
multiplication of two vectors, each multiplication in parallel.
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Unrestricted concurrency is explicit and semantically visible [Peyton Jones et al., 1996]. The
interleaved execution of threads, when combined with mutable state, gives rise to nondeter-
minism. Semaphores and locks can give rise to termination errors in the form of deadlock and
livelock. Parallelism, in particular the parallel evaluation of expressions, is semantically invisible
in a language without side-effects.

Concurrency is often implemented using parallelism. Indeed a concurrency abstraction can
be used to guarantee parallelism (given suitable hardware), for example by having the ability
to restrict the execution of individual threads to given processor cores.

Parallelism is largely outside the scope of this report, although it does make an appearance
in the discussion of relaxed memory in Section 2.

1.2 Testing Concurrent Programs

Systematic concurrency testing (SCT) [Flanagan and Godefroid, 2005; Musuvathi and Qadeer,
2007; Musuvathi et al., 2008; Thomson et al., 2014] is a way of tackling the problem of nonde-
terminism when writing tests. It aims to test a large number of schedules, whilst typically also
making use of local knowledge of the program to reduce the number of schedules needed to
be confident of an accurate result. By testing many schedules, we can increase our confidence
that any bugs which have not been found are unlikely to be exhibited.

SCT overcomes the scheduling problem by forcing a concurrent program to use a scheduler
implemented as part of the testing framework: either by overriding the concurrency primitives
of the language, or by modifying the program under test to call out to this new scheduler (as
in PULSE [Claessen et al., 2009]).

Once the scheduler is under control, schedules can be recorded and replayed, giving repro-
ducibility. Furthermore, by observing which scheduling decisions are available at each decision
point, possible schedules can be systematically explored, making different decisions on sub-
sequent executions. Common methods of choosing schedules to take are random [Thomson
et al., 2014], schedule bounding [Musuvathi and Qadeer, 2007], and partial-order reduction
[Flanagan and Godefroid, 2005]. The latter of these is complete: partial-order reduction will
find all distinct program states given enough time, in a more intelligent way than just trying
all schedules.

1.3 Scope

We aim to support all of the functionality of GHC’s concurrency API, as made available
through the Control.Concurrent and Control.Exception module hierarchies, which (1) does
not unavoidably require support from the run-time system, and (2) is not so nondeterministic
that there is no sensible way to model it accurately.

Some specific examples of things which are out of scope:

• threadDelay, as all this guarantees is that a thread will not run sooner than the delay.
There is no upper bound on the delay, and also no guarantee that any other thread will
be scheduled during the delay.
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• threadWaitRead, threadWaitWrite, and the STM variants, as there is no way to tell if a
file descriptor can be read from or written to without involving IO, and in addition is
influenced by other non-Haskell processes accessing the same file.

• Threads bound to specific operating-system threads (“bound threads”), as these affect
which operating system thread FFI calls operate on, and so alter program behaviour in a
parallel setting.

• BlockedIndefinitely exceptions, as determining if a thread is blocked indefinitely on
an MVar is a garbage collection problem, which is out of the reach of the programmer.
Déjà Fu does provide some annotation functions to record which shared state a thread
knows about, and so similar functionality can be supported on a limited scale, even the
GHC documentation warns programmers against relying on these exceptions for correct
functioning of a program.1

1.4 Contributions

Our contributions can be seen as follows:

• Existing results from the concurrency testing world have been applied to functional pro-
gramming.

• A somewhat novel partial-order reduction algorithm for systematic concurrency testing
based on a combination of two others: bounded partial-order reduction Coons et al.
[2013] and relaxed-memory DPOR Zhang et al. [2015].

• The Déjà Fu library for testing concurrent Haskell programs, using this algorithm.

1.5 Report Roadmap

Firstly we explore the problem of testing concurrent programs and how it can be done. In
Section 2 we discuss our typeclass abstraction for concurrency and how it relates to GHC’s
standard concurrency API in terms of functionality. Section 3 explains how, given a monadic
action polymorphic in the monad (as long as it has an instance of to our typeclass) we can
execute it with a given scheduler, and Section 4 extends this to cover a systematic exploration
of the space of all schedules. Section 5 discusses the issues of correctness: how do we know if
a result reported by Déjà Fu is actually right?

Then, we move on to the real-world impact of this work, with case studies of Déjà Fu applied
to two instances of pre-existing code, and one custom library in Section 6. Section 7 further
discusses the usage of Déjà Fu in combination with existing code. To conclude, Section 8
discusses related work, and summarises the community reception to the idea and what is still
to be done.

1 “Note that this feature is intended for debugging, and should not be relied on for the correct operation of your program. There
is no guarantee that the garbage collector will be accurate enough to detect your deadlock, and no guarantee that the garbage
collector will run in a timely enough manner.” GHC Base Libraries [2015]
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2 concurrency abstraction

For readers who are unfamiliar with Haskell, syntax and terminology will be explained as
they are introduced.

In order to test concurrent programs, we must first create a concurrency abstraction rich
enough to express everything that is commonly needed. However, care must be taken that it
does not become so rich that it becomes too difficult to implement.

The abstraction developed for Déjà Fu can be thought of as three independent components:

1. There is the MonadConc typeclass,2 which abstracts over much of the operations provided
in the Control.Concurrent hierarchy,3 and also some other functionality like mutable
memory cells (IORefs) and exceptions.

2. There is the MonadSTM typeclass, which abstracts over GHC’s software transactional mem-
ory API, and is related to MonadConc but can be used independently.

3. There is the memory model, which influences the behaviour of some of the MonadConc

operations and also the SCT behaviour.

Originally only a sequentially consistent memory model was provided, but some support
for relaxed memory was added following community feedback.

2.1 The MonadConc Typeclass

Readers already familiar with GHC’s concurrency primitives may find it enough to skim this
section noting the syntactic differences in the Déjà Fu variant.

departure The few departures from the semantics of the traditional concurrency abstrac-
tion are highlighted like this.

The MonadConc typeclass has an instance4 for IO, and so existing code using no I/O other
than concurrency and exceptions can be made suitable for testing quite simply. Existing code
which makes use of more functionality may require a light dusting of liftIO5 where it is safe,
see §2.1.

Threads

Threads let a program do multiple things at once. Every program has at least one thread,
which starts where main does and runs until the program terminates. A thread is the basic
unit of concurrency. It lets us pretend (with parallelism, it might even be true!) that we’re
computing multiple things at once.

2 Typeclasses are similar to interfaces in object-oriented languages. The key difference is that they also allow polymor-
phism based on the return type of a function as well as the argument types.

3 Haskell modules are arranged into a hierarchy, corresponding to files and directories.
4 A typeclass has instances; each type may have one unique instance for a typeclass.
5 The IO type allows unrestricted side-effects during execution. It turns out that many useful types are just IO with

some extra structure applied, and the liftIO function (which belongs to a typeclass called MonadIO) can be used to
‘translate’ the effects into such a type.
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We can start a new thread with the function:6

fork :: MonadConc m => m () -> m (ThreadId m)

The fork function starts evaluating its argument in a separate thread. It also gives us back
a (monad-specific) ThreadId value, which we can use to kill the thread later on, if we want.

A thread can query its own ThreadId:

myThreadId :: MonadConc m => m (ThreadId m)

In a real machine, there are of course a number of processors and cores. It may be that
a particular application of concurrency is only a net gain if every thread is operating on a
separate core, so that threads are not interrupting each other. The GHC run-time system refers
to the number of Haskell threads that can run truly simultaneously as the number of capabilities.
We can query this value, and fork threads which are bound to a particular capability:

getNumCapabilities :: MonadConc m => m Int

forkOn :: MonadConc m => Int -> m () -> m (ThreadId m)

The forkOn function interprets the capability number modulo the value returned by
getNumCapabilities.

departure getNumCapabilities is not required to return a true result. The testing in-
stances return “2” despite executing everything in the same capability, to encourage more
concurrency. This is to preserve determinism between different executions, where the actual
number of capabilities may differ. The IO instance does return a true result.

Sometimes we just want the special case of evaluating something in a separate thread, for
which we can use spawn (implemented in terms of fork):

spawn :: MonadConc m => m a -> m (CVar m a)

A spawn application returns a CVar (Concurrent Variable), to which we can apply readCVar,
blocking until the computation is done and the value is stored.

Threads are scheduled non-deterministically. Every time the run-time system decides to
perform a context switch, one of the runnable threads will be executed. Sometimes, however,
a thread may be runnable but also waiting for something to happen. The programmer can
provide a clue to the scheduler that another thread should be tried instead:

yield :: MonadConc m => m ()

Calling yield gives any other thread the opportunity to execute instead of the yielding one,
but it is not required to cause a context switch except on co-operative multitasking systems.

6 This is a function named fork with a type signature. Type signatures may contain typeclass constraints, type variables,
type constructors (similar to generics in other languages), and concrete types. Here ThreadId is a type constructor
and is applied to the type variable m, which is constrained to be a type with an instance of MonadConc.

5



Threading and the Foreign Function Interface

In order to accommodate Foreign Function Interface (FFI) calls which may block, GHC pro-
vides a mechanism for forking a Haskell thread to an operating system thread. This allows
FFI calls to be managed by the operating system, unlike normal Haskell threads which are
managed by the run-time system and multiplexed onto a smaller number of operating system
threads. This means that blocking FFI calls do not necessarily block the entire program.

There is no MonadConc equivalent of bound threads, as there would be no way to reliably
test their behaviour. Unfortunately, if bound threads are required, IO will have to be used.

A few predicates are provided for compatibility:7

rtsSupportsBoundThreads :: Bool

rtsSupportsBoundThreads = False

isCurrentThreadBound :: MonadConc m => m Bool

isCurrentThreadBound = return False

Mutable State

Threading by itself is not really enough. We need to be able to communicate between threads:
we’ve already seen an instance of this with the spawn function.

The simplest type of mutable shared state provided is the CRef (Concurrent Reference). CRefs
are shared variables which can be written to and read from:

newCRef :: MonadConc m => a -> m (CRef m a)

readCRef :: MonadConc m => CRef m a -> m a

modifyCRef :: MonadConc m => CRef m a -> (a -> (a, b)) -> m b

writeCRef :: MonadConc m => CRef m a -> a -> m ()

The modifyCRef function is atomic. The readCRef and writeCRef functions are not synchro-
nised: it is possible for one thread to read from a CRef strictly after another thread has written
to it and to observe an old value! See §2.3. To ensure that every thread sees a value as soon as
it is written there is a synchronised write function:

atomicWriteCRef :: MonadConc m => CRef m a -> a -> m ()

However, synchronisation can slow down execution in a parallel environment. Note that
modifyCRef is also synchronised.

Compare-and-swap (CAS)

As CRefs correspond very closely to mutable memory locations, there is also a compare-and-
swap interface available. Compare-and-swap is a synchronised atomic primitive which is used
to update a location in memory if and only if it has not been changed since some witness value
was produced. This role of this witness value is called a Ticket here:

7 Function application in Haskell uses no special syntax to denote argument values, only juxtaposition, so return False

is applying the value False to the function return. The function return is used to inject a value into a monad, it is
unfortunately named and has nothing to do with the return keyword in other languages.
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readForCAS :: MonadConc m => CRef m a -> m (Ticket m a)

peekTicket :: MonadConc m => Ticket m a -> m a

A Ticket can be used to check if a CRef has been written to since it was produced, and can
also be used to get the value that was seen then.

casCRef :: MonadConc m => CRef m a -> Ticket m a -> a -> m (Bool, Ticket m a)

The casCRef function is synchronised, and strict in the value written. It replaces the value
within a CRef if it hasn’t been modified since the Ticket was produced. It returns an indica-
tion of success and a Ticket to use in future operations. This operation is often used in the
implementation of lock-free synchronisation primitives.

There is also an equivalent of modifyCRef using a compare-and-swap. This behaves almost
the same as the non-CAS version but may be more performant in some cases, and is strict in
the value being written:

modifyCRefCAS :: MonadConc m => CRef m a -> (a -> (a, b)) -> m b

Mutual Exclusion

A CVar is a shared variable under mutual exclusion. It has two possible states: full or empty.
Writing to a full CVar blocks until it is empty, and reading or taking from an empty CVar

blocks until it is full. There are also non-blocking functions which return an indication of
success:

newEmptyCVar :: MonadConc m => m (CVar m a)

putCVar :: MonadConc m => CVar m a -> a -> m ()

readCVar :: MonadConc m => CVar m a -> m a

takeCVar :: MonadConc m => CVar m a -> m a

tryPutCVar :: MonadConc m => CVar m a -> a -> m Bool

tryTakeCVar :: MonadConc m => CVar m a -> m (Maybe a)

Unfortunately, the mutual exclusion behaviour of CVars means that computations can be-
come deadlocked. For example, deadlock occurs if every thread tries to take from the same CVar.
The GHC run-time system can detect this in some situations (and will complain if it does), and
so can Déjà Fu in a more informative way.

departure Déjà Fu can only detect deadlock to the same extent as GHC if every thread
is annotated with a declaration of the CVars it knows about. This is because GHC can detect
deadlocks during garbage collection, which is out of the reach of Déjà Fu.

Exceptions

Exceptions are a way to bail out of a computation early. Whether they’re a good solution to
that problem is a question of style, but they can be used to jump quickly to error handling
code when necessary. The basic functions for dealing with exceptions are:

catch :: (Exception e, MonadConc m) => m a -> (e -> m a) -> m a

throw :: (Exception e, MonadConc m) => e -> m a
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Calling throw causes the computation to jump back to the nearest enclosing catch capable
of handling the particular exception. As exceptions belong to a typeclass, rather than being a
concrete type, different catch functions can be nested, to handle different types of exceptions.

departure The IO catch function can catch exceptions from pure code. This is not true in
general for MonadConc instances. So some things which work normally may not work in testing,
and we risk false negatives. This is a small cost, however, as exceptions from pure code are
things like pattern match failures and evaluating undefined, which are arguably bugs.

Exceptions can be used to kill a thread:

throwTo :: (Exception e, MonadConc m) => ThreadId m -> e -> m ()

killThread :: MonadConc m => ThreadId m -> m ()

These functions block until the target thread is in an appropriate state to receive the excep-
tion. A thread has a masking state, which can be used to block exceptions from other threads.
There are three masking states: unmasked, in which a thread can have exceptions thrown to it;
interruptible, in which a thread can only have exceptions thrown to it if it is blocked; and un-
interruptible, in which a thread cannot have exceptions thrown to it. When a thread is started,
it inherits the masking state of its parent. We can also execute a subcomputation with a new
masking state:8

mask :: MonadConc m => ((forall a. m a -> m a) -> m b) -> m b

uninterruptibleMask :: MonadConc m => ((forall a. m a -> m a) -> m b) -> m b

In both cases, the action evaluated is passed a function to reset the masking state to the
original one. A thread can be forked and given a function to reset the masking state:

forkWithUnmask :: MonadConc m => ((forall a. m a -> m a) -> m ())

-> m (ThreadId m)

forkOnWithUnmask :: MonadConc m => Int -> ((forall a. m a -> m a) -> m ())

-> m (ThreadId m)

We can also fork a thread and call a supplied function when the thread is about to terminate,
which is useful for informing the parent when a child terminates, for example:

forkFinally :: MonadConc m => m a -> (Either SomeException a -> m ())

-> m (ThreadId m)

The SomeException type is the top of the exception hierarchy, and so can be used to catch
all exceptions.

8 These functions have a higher-ranked type. Removing the forall stuff, we have (m a -> m a) -> m b, which is a
function which takes a function as an argument and returns a result. The forall is necessary because, without it,
the concrete type that the variable a is unified with is fixed across all usage sites, whereas with the forall it can be
determined uniquely everywhere it is used.
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Lifting Actions into MonadConc

If the programmer needs to make use of IO actions, rather than MonadConc actions, then this
can be achieved by adding a MonadIO context and using liftIO. However, this can easily
compromise the results of testing, as the test runner cannot peek inside IO actions. Thus, it is
only safe to life an IO action in this way if:

• The action is atomic and synchronised.

Otherwise the test framework will possibly miss schedules which lead to a bug.

• The action is deterministic, when executed as part of a computation with a deterministic
schedule.

Otherwise a fundamental assumption behind the testing methodology is false, and no
guarantees about completeness can be made.

• The action cannot block on the action of another thread.

Otherwise test execution may deadlock.

In practice these restrictions are not particularly onerous. The only unsynchronised actions
are the CRef ones, or primitives exposed by GHC. Testing in any language already assumes
that any I/O is deterministic. Atomicity and inter-thread blocking tend not to be issues when
communicating with the external environment.

2.2 Software Transactional Memory

CVars are nice, until we need more than one, and find they need to be kept synchronised. As
we can only claim one CVar atomically, it seems we need to introduce a CVar to control access
to CVars! But that would be unwieldy and prone to bugs.

Software transactional memory (STM) [Shavit and Touitou, 1995] is the solution. STM uses
CTVars, or Concurrent Transactional Variables, and is based upon the idea of atomic transactions.
An STM transaction consists of one or more operations over a collection of CTVars, where a
transaction may be aborted part-way through depending on their values. If the transaction
fails, none of its effects take place, and the thread blocks until the transaction can succeed. This
means we need to limit the possible actions in an STM transaction to those which can be safely
undone and repeated, so we have another typeclass, MonadSTM.
CTVars, like CRefs, always contain a value, as shown in the types of the functions:

newCTVar :: MonadSTM s => a -> s (CTVar s a)

readCTVar :: MonadSTM s => CTVar s a -> s a

writeCTVar :: MonadSTM s => CTVar s a -> a -> s ()

If we read a CTVar and don’t like the value it has, the transaction can be aborted, and the
thread will block until at least one of the referenced CTVars has been mutated:

retry :: MonadSTM s => s a

check :: MonadSTM s => Bool -> s ()

We can also try executing a transaction, and do something else if it fails:

9



orElse :: MonadSTM s => s a -> s a -> s a

The nice thing about STM transactions is that they compose. We can take small transactions
and build bigger transactions from them, and the whole is still executed atomically. This means
we can do complex state operations involving multiple shared variables without worrying!

Each MonadConc has an associated MonadSTM, and can execute transactions of it atomically:9

atomically :: MonadConc m => STMLike m a -> m a

The instance of MonadConc for IO uses STM as its MonadSTM.
STM can also use exceptions:

throwSTM :: (Exception e, MonadSTM s) => e -> s a

catchSTM :: (Exception e, MonadSTM s) => s a -> (e -> s a) -> s a

If an exception propagates uncaught to the top of a transaction, that transaction is aborted
and the exception is re-thrown in the thread.

2.3 Memory Model

There are three memory models supported in Déjà Fu:

Sequential Consistency
This model is the most intuitive. A program behaves as a simple interleaving of the
actions in different threads. When a CRef is written to, that write is immediately visible
to all threads.

Total Store Order (TSO)
Each thread has a write buffer. A thread sees its writes immediately, but other threads
will only see writes when they are committed, which may happen later. Writes are
committed in the same order that they are created.

Partial Store Order (PSO)
A relaxation of TSO where each thread has a write buffer for each CRef. A thread sees
its writes immediately, but other threads will only see writes when they are committed,
which may happen later. Writes to different CRefs are not necessarily committed in the
same order that they are created.

The memory model only makes a difference for unsynchronised operations, such as readCRef,
writeCRef, and readForCAS.

The default memory model for testing is TSO, as that most accurately models the behaviour
of modern x86 processors. The use of a relaxed memory model can require a much larger
number of schedules to be tested when unsynchronised operations are used. PSO required no
additional work to support, and so was also included.

9 Here STMLike is a type family, it is used to relate the MonadConc and MonadSTM typeclasses.
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3 program execution

This chapter describes the test execution of a concurrent program written using the MonadConc

abstraction, not the execution of programs using GHC’s actual concurrency primitives. Of
course, for correctness of testing, there should be a correspondence between these two models,
see Section 5.

The execution of a concurrent program is considered to be the sequential stepwise execution
of primitive actions, the most basic things that a computation can do.

3.1 Primitive Actions

Computations are composed out of a continuation monad, defined as follows:

newtype M n r s a = M { runM :: (a -> Action n r s) -> Action n r s }

The Action type is the type of primitive actions. There are a number of primitive actions
used to construct the testing instances of MonadConc. Each thread of execution consists of a
sequence of continuations, terminated by the AStop primitive, which has no continuation and
signals the termination of the thread.

The type variables n, r, s and a are the underlying monad (this must be something allowing
mutable state, like IO or ST); the mutable reference type of that monad; the corresponding
MonadSTM; and the input type. That is, the M n r s a type is a wrapper around a function
which, given a continuation, produces a new primitive action.

The Functor instance allows applying a function to the input value of the continuation:

instance Functor (M n r s) where

fmap f (M m) = M (\c -> m (c . f))

The Applicative instance allows injecting a pure value into the M type, by constructing a
continuation which consumes this value. It also allows extracting a function from one compu-
tation, a value from another, and applying them.

instance Applicative (M n r s) where

pure x = M (\c -> AReturn (c x))

(M f) <*> (M v) = M (\c -> f (\g -> v (c . g)))

AReturn action
Execute the given action.

Why is AReturn necessary? Why not \c -> c x instead? It is because the scheduler in the
testing implementation cannot work at a finer granularity than individual primitive actions,
whereas in the real implementation, things like exceptions can pre-empt a return. In order to
model this possibility, then, pure must have a corresponding primitive.

Finally, the Monad instance allows sequencing.

instance Monad (M n r s) where

return = pure

11



(M m) >>= (M k) = M (\c -> m (\x -> k x c))

The full listing of primitive actions is available in Appendix A. Some of the more interesting
ones will be expanded upon in this section.

Threading

All of the forking functions are implemented with the same primitive action, which corre-
sponds most closely to forkWithUnmask:10

fork ma = forkWithUnmask (\_ -> ma)

forkOn c ma = forkOnWithUnmask c (\_ -> ma)

The forkWithUnmask function uses the AFork primitive, which creates a new thread:

forkWithUnmask (M ma) = M (AFork "" action) where

action unmask = runM (ma unmask) (\_ -> AStop)

AFork name (unmask→ action) (thread id→ action)
Create a new thread from the first action, and continue executing the current thread with
the second.

As the testing implementation does not run things in parallel, the forkOn variant simply
ignores its argument:

forkOnWithUnmask _ = forkWithUnmask

The name argument to AFork is used, if set, to give more helpful execution traces. If no
name is given, a unique numeric identifier is used. MonadConc provides a variant of each
forking function which takes the name as a parameter. Like the non-named functions, these
are all implemented in terms of one:

forkWithUnmaskN name (M ma) = M (AFork name action) where

action unmask = runM (ma unmask) (\_ -> AStop)

Exceptions

Exceptions can be used to terminate a computation, either in the current thread or a different
one. They can also be caught. The presentation in terms of primitive actions is deceptively
simple, see §3.2 for the more complex execution details.

throw e = M (\_ -> AThrow e)

throwTo tid e = M (\c -> AThrowTo tid e (c ()))

AThrow exception
Raises an exception in the current thread, terminating the current execution.

Consider the continuation produced within throw. It throws away its argument, there is
no further action to perform, hence the only possible thing that the execution can do is to
terminate the thread.

10 Type signatures have been omitted here as they were provided in §2.1.
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AThrowTo exception action
Raises an exception in the other thread, blocking if the other thread has exceptions
masked.

When an exception is raised, the thread it is raised within stops whatever it is currently
doing, and backtracks to the closest exception handler capable of dealing with that type of
exception. If there is no capable handler, the thread is terminated.

catch (M ma) h = M (ACatching (runM . h) ma)

ACatching (exception→ handler) action continuation
Registers a new exception handler for the duration of the inner action.

Each thread has a stack of exception handlers, where the ACatching primitive pushes a new
handler, and APopCatching pops. APopCatching is added automatically when an ACatching

primitive is evaluated.

APopCatching action
Remove the exception handler from the top of the stack.

There is one primitive action for entering a new masking state:

mask (M mb) = M (AMasking MaskedInterruptible (\f -> mb f))

uninterruptibleMask (M mb) = M (AMasking MaskedUninterruptible (\f -> mb f))

AMasking masking state (unmask→ action) continuation
Executes the inner action under a new masking state, and also gives it a function to reset
the masking state.

Like ACatching, the AMasking action also has a counterpart primitive to undo its effect,
called AResetMask. Why is this necessary? AMasking can both set and reset the masking state,
but the separate function enables more informative execution traces to be generated for the
user.

AResetMask set? inner? masking state action
Sets the masking state.

The set? and inner? flags are used so that generated traces can helpfully indicate when a
mask or uninterruptibleMask function started and stopped executing, and when an unmask-
ing function passed in to a continuation was used. This is much more helpful for debugging
purposes than just seeing that the masking state had been changed.

Software Transactional Memory

STM is implemented with its own set of primitive actions which operate in much the same way
as the concurrency primitives. The major difference is that a transaction is executed atomically,
whereas the concurrency actions are executed one action at a time, allowing threads to interfere
with each other.

13



atomically stm = M (AAtom stm)

AAtom transaction continuation
Execute an STM transaction atomically.

When a transaction is executed by AAtom, there are three possible outcomes:

1. the transaction completed successfully, and returned a value;

2. the transaction aborted due to an uncaught exception; and

3. the transaction aborted due to a call to retry. In this third case, the thread is blocked
until any of the CTVars referenced in the transaction are mutated, after which it can be
tried again.

Transactions can be composed into larger atomic transactions. Aborting a component trans-
action must not break atomicity. The orElse function combines transactions appropriately:

orElse a b = S (SOrElse (runSTM a) (runSTM b))

SOrElse transaction transaction continuation
Try executing the first transaction, if it fails, execute the second.

As transactions are atomic, the handling of exceptions can be vastly simplified. Catching is
performed by executing the entire inner action and inspecting the result. No explicit stack of
exception handlers needs to be maintained, as the function call stack suffices.

The effects of a transaction only become visible when it completes successfully. Furthermore,
executing a transaction enforces a write barrier.

Testing Annotations

In order for Déjà Fu to perform limited detection of CVar- and CTVar-based deadlocks, some-
thing which GHC can use the garbage collector for, there are the optional testing annotations:

_concKnowsAbout var = M (\c -> AKnowsAbout var (c ()))

_concForgets var = M (\c -> AForgets var (c ()))

_concAllKnown = M (\c -> AAllKnown (c ()))

AKnowsAbout (Either cvar ctvar) action
Record that the thread has access to the given variable.

AForgets (Either cvar ctvar) action
Record that the thread no longer has access to the given variable.

AAllKnown action
Record that all variables the thread knows about have been reported.

If a thread is blocked on a CVar or CTVar (an STM transaction referencing it has aborted), and
it is known what variables all threads have access to, and all other threads with a reference to
that variable are also blocked on it, then the thread is deadlocked. This can easily be extended
to collections of threads which are all blocked on the same variable.
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3.2 Stepwise Execution

Execution of an entire computation proceeds in a stepwise manner: a thread is chosen by the
scheduler, its primitive action is executed, and a new action is returned to be executed by that
thread in the next step. The simplest thing that a thread can do is to stop, which will serve as
a useful minimal example:

stepStop = simple (kill tid threads) Stop

The effect of stepStop is to: remove the current thread from the map of live threads, and
then return the new thread map and the name of the action to appear in the trace (Stop,
here). The simple helper function is for actions which don’t create any new shared variables
or threads, or have any relaxed-memory effects.

Another simple action that a thread can perform is to return a value:

stepReturn c = simple (goto c tid threads) Return

The effect of stepReturn is to: extract the continuation of the action and replace the contin-
uation of the current thread with it.

Threading

type Threads n r s = Map ThreadId (Thread n r s)

A map is used to keep track of all current threads. There are helper functions to manipulate
this map: kill and goto are two; another is launch, used to create a new thread. This can be
seen in the implementation of fork:

stepFork name a b = return (Right (threads’, idSource’, Fork newtid, wb)) where

threads’ = goto (b newtid) tid (launch tid newtid a threads)

(idSource’, newtid) = nextTId name idSource

The stepFork function involves two modifications to the thread map: firstly, a new thread is
created (and inherits the masking state of its parent); secondly the continuation of the current
thread is updated. Here simple cannot be used, as the identifier source is being modified.

In the implementation of yield, no special functionality is needed:

stepYield c = simple (goto c tid threads) Yield

Its effect is purely a scheduling concern; from the point of view of updating the state of the
system, it is no different to return.

CRefs and Relaxed Memory

newtype CRef r a = CRef (CRefId, r (Map ThreadId a, Integer, a))

A CRef is implemented as a mutable reference containing a globally visible value, a counter
of how many write commits there have been, and a number of thread-specific values. These
thread-specific values correspond to uncommitted writes. A Ticket, used in compare-and-
swap operations, is a witness that a specific prior value was observed. Like threads, a CRef

(and CVar) can be given a name when it is initially created.
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There are three memory models supported by Déjà Fu. Each has a different implementation
for writing to a CRef:

stepWriteRef cref@(CRef (crid, _)) a c = case memtype of

The first model assumes sequential consistency. There are no relaxed memory effects:11

SequentialConsistency -> do

writeImmediate cref a

simple (goto c tid threads) (WriteRef crid)

The writeImmediate function writes to the globally visible value, and clears the thread-
specific values.

Total store order (TSO) corresponds to an architecture where each thread has its own cache.
This matches modern x86 and x86 64 processors. Writes made by a thread will be cached, but
they will be committed in that same order to main memory:

TotalStoreOrder -> do

wb’ <- bufferWrite wb tid cref a tid

return (Right (goto c tid threads, idSource, WriteRef crid, wb’))

The bufferWrite function appends a write to the relevant write buffer, in this case the one
corresponding to that thread.

Partial store order (PSO) is a more relaxed version of total store order, where the writes a
thread makes may not necessarily be committed in order. It can be modelled by giving each
CRef a write buffer, rather than each thread:

PartialStoreOrder -> do

wb’ <- bufferWrite wb crid cref a tid

return (Right (goto c tid threads, idSource, WriteRef crid, wb’))

Both the TSO and PSO cases update the thread-specific map. A thread will always see the
writes it has made, but other threads may not.

The compare-and-swap write is a little different. It has the effect of a memory barrier: any
uncommitted writes to any CRef are committed before the CAS is done, and the result is
immediately globally visible. There is a synchronised function for actions with this barrier
property:12

stepCasRef cref@(CRef (crid, _)) tick a c = synchronised $ do

(suc, tick’) <- casCRef cref tid tick a

simple (goto (c (suc, tick’)) tid threads) (CasRef crid suc)

The casCRef function here generates a new Ticket, compares with the supplied one, and
then swaps the value. It is provided, rather than the logic be included verbatim, as it is used
again in the implementation of stepModRefCas.

The implementation of synchronised is as follows:

11 This is an emple of do notation, which is a convenient synctatic sugar for composition of monadic actions.
12 The $ operator is function application, but with a very low precedence. This makes it convenient for avoiding paren-

theses, which can be more readable when multi-line expressions are involved.
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synchronised ma = do

writeBarrier wb

res <- ma

case res of

Right (threads’, idSource’, act’, _) -> return

(Right (threads’, idSource’, act’, emptyBuffer))

_ -> return res

Here writeBarrier commits all cached writes. The action is then executed, and an empty
write buffer returned. So simple can be used in the implementation of stepModRef despite the
write buffer being changed.

Cached writes can be committed to the globally visible value (at which point the thread-
specific values disappear) by executing a commit action:

stepCommit t c = do

wb’ <- case memtype of

TotalStoreOrder -> commitWrite wb t

PartialStoreOrder -> commitWrite wb c

return (Right (threads, idSource, CommitRef t c, wb’))

Note how the invocation of commitWrite differs between the cases: under TSO, the cache
corresponding to the thread is used; whereas under PSO, the cache corresponding to the CRef

is used. There is no case for sequential consistency here, as commit actions are not explicitly
introduced by the program under test; they are introduced by the test runner when executing
under a relaxed memory model. See §3.3.

Reading a reference is quite simple:

stepReadRef cref@(CRef (crid, _)) c = do

val <- readCRef cref tid

simple (goto (c val) tid threads) (ReadRef crid)

stepReadRefCas cref@(CRef (crid, _)) c = do

tick <- readForTicket cref tid

simple (goto (c tick) tid threads) (ReadRefCas crid)

The readCRef function checks if there is a cached value for the current thread and, if so,
returns it. Otherwise it returns the globally visible value. The readForTicket function behaves
similarly, but returns a Ticket rather than the current value.

Exceptions

A thread has both a stack of exception handlers, and a masking state. The handler stack affects
all exceptions raised in the thread, whereas the masking state only affects exceptions raised by
throwTo.

stepCatching h ma c = simple threads’ Catching where

a = runCont ma (APopCatching . c)

e exc = runCont (h exc) (APopCatching . c)

threads’ = goto a tid (catching e tid threads)
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Note the addition of APopCatching at the ends of the enclosed action and the handler. This
ensures that the handler is popped from the stack whether an exception is thrown or not.

When an exception is thrown, it may not be able to be handled by the topmost handler, as
there are exceptions of many types:

stepThrow e = case propagate e tid threads of

Just threads’ -> simple threads’ Throw

Nothing -> return (Left UncaughtException)

The propagate function pops from the stack of exception handlers until one is found capable
of handling that type of exception. It then jumps to the handler, and returns the new thread
map. If no handler was found, the thread is killed by the uncaught exception.

Throwing an exception to another thread is significantly more complicated, and is also a
synchronised operation:

stepThrowTo t e c = synchronised $

let threads’ = goto c tid threads

blocked = block (OnMask t) tid threads

in if interruptible (lookup t threads)

then case propagate e t threads’ of

Just threads’’ -> simple threads’’ (ThrowTo t)

Nothing

| t == 0 -> return (Left UncaughtException)

| otherwise -> simple (kill t threads’) (ThrowTo t)

else simple blocked (BlockedThrowTo t)

Firstly, whether the thread is interruptible is checked. If not, the current thread is blocked.
If it is interruptible, then the exception is propagated through its handler stack. If a handler is
found, the thread jumps to it, throwing away whatever it was going to do next. If a handler is
not found, the thread is killed. If the main thread is killed, the entire computation terminates.

Software Transactional Memory

As STM transactions are atomic, the implementation is comparatively simple. They are still
implemented in terms of a step function, but it is just iterated until termination.

Firstly, the transaction is executed:

stepAtom stm c = synchronised $ do

(res, idSource’) <- runstm stm idSource

case res of

There are now three possible results:

1. The transaction succeeds. All threads blocked on CTVars which were modified are woken:

Success _ written val

let (threads’, woken) = wake (OnCTVar written) threads

in return (Right (goto (c val) tid threads’, idSource’, STM woken, wb))
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2. The transaction aborts due to retry. The thread is blocked until any of the read CTVars
are modified:

Retry touched ->

let threads’ = block (OnCTVar touched) tid threads

in return (Right (threads’, idSource, BlockedSTM, wb))

3. The transaction aborts due to an uncaught exception. The exception is thrown in the
thread:

Exception e -> stepThrow e

3.3 Scheduling

When there are multiple non-blocked threads available, the choice of which one to execute
next is made by the scheduler.

A scheduler is represented as a pure function, and is supplied as a parameter when testing.
Doing things this way allows for deterministic results and, just as importantly, allows for
computing a list of scheduling decisions in advance, designed to try to provoke the system into
a new state. This explicit computation of schedules is the basis for the systematic concurrency
testing implementation.

type Scheduler s = s

-> Maybe (ThreadId, ThreadAction)

-> NonEmpty (ThreadId, NonEmpty Lookahead)

-> (Maybe ThreadId, s)

The Maybe return value can be used by the schedule to signal that the execution should be
aborted. In order to make nontrivial decisions, a scheduler maintains some state, of type s.
This could be, for example, a random number generator:

randomSched :: RandomGen g => Scheduler g

randomSched g _ threads = (Just (threads’ !! choice), g’) where

(choice, g’) = randomR (0, length threads’ - 1) g

threads’ = map fst (toList threads)

The initial state is supplied when the execution begins, and the final state is returned when
it terminates. Use of this state is, of course, not mandatory, as a simple round-robin scheduler
illustrates:

roundRobinSched :: Scheduler ()

roundRobinSched _ Nothing _ = (Just 0, ())

roundRobinSched _ (Just (prior, _)) threads

| prior >= maximum threads’ = (Just (minimum threads’), ())

| otherwise = (Just (minimum (filter (>prior) threads’)), ())

where threads’ = map fst (toList threads)

A scheduler is also given information about the state of the system: what the last thread
it scheduled did (this is Nothing if this is the first step of the computation), and what every
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runnable thread in the system will do in the next few steps. Here NonEmpty is the type of
non-empty lists,13 to give a type-level guarantee that there are threads to run: if there are no
runnable threads, the execution terminates, signalling a deadlock condition.

The ThreadAction type is a record of what has happened. The Lookahead type is a slightly
simpler view of what will happen. The two types cannot be the same, because in general the
effect of performing a primitive action at some point in the future cannot be determined, due
to interactions between threads.

Phantom Threads

In a sequentially consistent memory model, the set of runnable threads is exactly the set of
threads created by AFork which are not blocked.

Under relaxed memory, however, this is not the case. In order to model the nondeterminism
of CRef writes, for every buffer with an uncommitted write (threads, under TSO; CRefs, under
PSO), a phantom thread is created, and added to the runnable set. A phantom thread is a thread
with only one action: ACommit. These threads are never added to the thread map, they only
exist in order for the scheduler to determine when commits happen.

This may seem like an odd approach: why create new not-quite-threads in order to model
relaxed memory? The advantage is that systematic concurrency testing techniques assume
there is only one source of nondeterminism: the scheduler. If a second source is added, such
as when writes are committed, it is difficult to integrate this with existing algorithms. By using
phantom threads, the two sources of nondeterminism are unified, and existing algorithms just
work. The phantom thread approach was suggested by [Zhang et al., 2015].

4 systematic concurrency testing

Once the scheduling behaviour of a program can be directed at will, the next step is systematic
testing of programs for a carefully chosen variety of schedules. Systematic concurrency testing
(SCT) comprises a family of techniques, all with the same general aim: to try to find bugs in
concurrent programs, more reliably than running a program several times. Within this scope,
some techniques are complete, in that they find all possible results a program could produce;
others are incomplete, as there is no such guarantee.

SCT works by providing an initial sequence of scheduling decisions intended to put the
program into a new internal state. After this point some deterministic scheduler is used, and
the final trace is examined to produce new initial sequences. Typically the assumption is made
that all executions are terminating: all possible sequences of scheduling decisions will lead to
a termination by deadlock or otherwise. Another common assumption is that there is a finite
number of possible schedules: this forbids finite but arbitrarily long executions, as can be
created with constructs such as spinlocks.

Systematic testing terminates when there are no further distinct initial sequences possible.

13 And toList converts a NonEmpty a to a [a].
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4.1 Schedule Bounding

Schedule bounding is an incomplete approach to SCT. Each sequence of scheduling decisions
is associated with a bound value, limiting the results of some bound function. Such a function
could be the number of pre-emptive context switches, for example. Schedule bounding was
introduced in [Musuvathi and Qadeer, 2007], and came from work in the model checking field.

Here are three common bound functions in use today:

Pre-emption Bounding [Musuvathi and Qadeer, 2007]
The number of pre-emptive context switches is bounded.

Fair Bounding [Musuvathi and Qadeer, 2008]
The difference between the number of times different threads call yield is bounded.

Delay Bounding [Emmi et al., 2011]
The number of deviations from a deterministic scheduler is bounded.

Both pre-emption bounding and delay bounding have empirical evidence, in [Thomson et al.,
2014], showing that small bounds are good for finding bugs in many real-world programs.

Fair bounding is used to handle programs which make use of lock-free constructs such as
spinlocks. A spinlock may be implemented like so:

lock p var = spin where

spin = do

x <- readCRef var

unless (p x) (yield >> spin)

Here, a CRef is read from repeatedly. Each time some predicate on its value is not satisfied,
the thread yields and tries again. This can easily give rise to infinitely long executions: simply
don’t execute any other thread after the yield, as it doesn’t force a context switch. Fair bound-
ing bounds the difference between the number of times that threads have called yield: if the
thread that has yielded the fewest times has done so 1 time, and the thread that has yielded
the most times has done so 10 times, then the bound value is 9.

Strictly speaking, schedule bounding refers to trying only those schedules with a bound
value equal to some fixed parameter. A variant of this is iterative bounding, where this param-
eter is increased from zero up to some limit. Another variant is where an inequality, rather
than an equality, is used. This explores the same schedules as iterative bounding, but doesn’t
impose the same ordering properties over schedules tried. In practice, “schedule bounding”
typically refers to this third type, unless specified otherwise.

Déjà Fu uses a combination of pre-emption and fair bounding, with a default pre-emption
bound of 2 and a fair bound of 5, in order to handle gracefully any computations which
use spinlocking techniques. The default pre-emption bound was chosen based on empirical
evidence.

4.2 Partial-order Reduction

Partial-order reduction is a complete approach to SCT. It is based on the insight that, when com-
paring different execution traces, only the relative ordering of dependent actions is important.
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Two actions are dependent if the order in which they are performed could affect the result of
the program:

Dependency Relation [Flanagan and Godefroid, 2005]
Let T be the set of transitions in a concurrent system. A binary, reflexive, and symmetric
relation D ⊆ T × T is a valid dependency relation iff, for all t1, t2 ∈ T, (t1, t2) /∈ D (t1 and
t2 are independent) following properties hold for all program states s:

1. if t1 is enabled in s and s
t1−→ s ′, then t2 is enabled in s iff t2 is enabled in s ′; and

2. if t1 and t2 are enabled in s, then there is a unique state s ′ such that s
t1t2−−−→ s ′ and

s
t2t1−−−→ s ′.

In other words, independent transitions cannot enable or disable each other, and enabled
independent transitions commute. Rather than use this relational definition directly, typically
some sufficient conditions for dependency are identified. These conditions are determined by
what sorts of things the concurrent system under test can express.

Typically, the presentation of algorithms assumes a very simple core concurrent language of
just reads and writes. This gives rise to the following dependency condition:

x = y ⇐⇒ thread id(x) = thread id(y)∨

(variable(x) = variable(y)∧ (is write(x)∨ is write(y)))

Where x = y is read as “x and y are dependent”. This choice of notation would suggest a
symbol↔ meaning independence, but that doesn’t seem to be used.

The dependency relation for Déjà Fu is rather more complex than this, as there are more ac-
tions than just reads and writes. However it can be simplified to a few quite general conditions
over different sorts of reads and writes, with some remaining special cases.

These special cases are:

dependent (t1, a1) (t2, a2) = case (a1, a2) of

(Lift, Lift) -> True

(ThrowTo t, _) -> t == t2

(_, ThrowTo t) -> t == t1

(STM _, STM _) -> True

• Two lifts from the underlying monad are always dependent, as in general this may al-
low arbitrary I/O to be performed. The only restriction over I/O is that, given a fixed
schedule, the I/O is deterministic.

• Throwing an exception to a thread is dependent with anything, as all actions can be
pre-empted by an exception.

• STM transactions are always dependent. This final case could probably be refined to STM
transactions which have some overlap in the CTVars they use, but this is an optimisation
which has not yet been tried.

Furthermore, as a Haskell program terminates when the main thread terminates, there is a
dependency between the last action in a trace (whatever it may be) and everything else.
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The general cases are defined in terms of synchronised and unsynchronised actions. Syn-
chronised actions commit all pending CRef writes.

dependentActions memtype buf a1 a2 = case (a1, a2) of

(UnsynchronisedRead r1, UnsynchronisedWrite r2) -> r1 == r2

(UnsynchronisedWrite r1, UnsynchronisedRead r2) -> r1 == r2

(UnsynchronisedWrite r1, UnsynchronisedWrite r2) -> r1 == r2

(UnsynchronisedRead r1, _) | isBarrier a2 -> isBuffered buf r1

(_, UnsynchronisedRead r2) | isBarrier a1 -> isBuffered buf r2

_ -> same crefOf && (isSynchronised a1 || isSynchronised a2) || same cvarOf

• A read and write to the same CRef are dependent, as are two writes. The reason for this
dependence even under a relaxed memory model is because writes give rise to commits,
which do synchronise.

• An unsynchronised read from a variable is dependent with an action that imposes a
memory barrier if there are buffered writes to the same variable.

• Any two actions on the same CRef where at least one of them will cause a commit are
dependent.

• Any two actions on the same CVar are dependent.

Characterising the execution of a concurrent program by the ordering of its dependent ac-
tions only gives us a partial order over the actions in the entire program. An execution trace may
be just one possible total order corresponding to the same partial order. The goal of partial-
order reduction, then, is to eliminate these redundant total orders by intelligently making
scheduling decisions to permute the order of dependent actions.

This can be done by executing a program with a deterministic scheduler, and then examining
the trace, the total order, for backtracking points. A backtracking point is a place in the execution
where multiple dependent choices were available, and only one was tried. The exploration of
the state space continues by making the same scheduling decisions up to that point, and
then making a different decision. This process of doing partial-order reduction based on
information gathered at run-time, rather than static analysis, is called dynamic partial-order
reduction (DPOR).

In an imperative language, DPOR is usually done by executing the program under test
stepwise in a recursive function, where each stack frame has a set of decisions still to try, and
this is mutated by later calls when a backtracking point is identified. As Déjà Fu is a Haskell
library, this is not a very natural way to formulate anything, and so a different approach was
taken.

Déjà Fu explicitly constructs a tree in memory, where each path from the root to a leaf
corresponds to one complete execution. Forks in the tree correspond to places where multiple
decisions have been tried. The operation proceeds like so: generate a list of initial scheduling
decisions; execute the computation, using some default scheduler when the supplied decisions
are exhausted; add the resultant trace to the tree; search for and add any new backtracking
points to the tree; and continue while there is still work to do.

This is implemented as follows:
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sctBounded memtype bf run = go initialState where

go state = case next state of

Just decisions -> do

(result, s, trace) <- run decisions

let bpoints = findBacktrack memtype s trace

let newBPOR = todo bf bpoints (grow memtype trace state)

((result, trace) :) <$> go newState

Nothing -> return []

Here next returns a schedule prefix; run executes the computation with a given sequence of
initial scheduling decisions, returning the final result, the final scheduler state (which includes
a tentative list of bracktracking points), and the execution trace; findBacktrack identifies a
list of actual backtracking points from these tentative ones; grow adds the trace to the tree
structure; and todo adds the newly-identified backtracking points. It is also the responsibility
of todo to ensure these new backtracking points do not cause schedules exceeding the bound
to be generated; the bf function is the bound function, expressed as a predicate.

The entire process terminates when next returns Nothing, as there are no unexplored back-
tracking points left.

Integration with Schedule Bounding

The naı̈ve way to integrate DPOR with schedule bounding would be to first use partial-order
techniques to prune the search space, and then to additionally filter things out with schedule
bounding.

Unfortunately, this is unsound. This approach misses parts of the search space reachable
within the bound. This is because the introduction of the bound introduces new dependencies
between actions, which cannot be determined a priori. The solution is to add conservative
backtracking points to account for the bound in addition to any normal backtracking points
that are identified. Where to insert these depends on the bound function.

In the case of pre-emption bounding, it suffices to try all possibilities at the last context
switch before a normal backtracking point. This is because context switches influence the
number of pre-emptions needed to reach a given program state, depending on which thread
gets scheduled. As pre-emption bounding has been found empirically to be successful with
a low number of threads, and DPOR is already eliminating a lot of possibilities, this is not in
practice a huge additional cost.

Integration with Relaxed Memory

Due to the use of phantom threads, explained in §3.3, almost nothing needs to be done to
support relaxed memory!

The dependentActions function has some knowledge of relaxed memory in order to make
less pessimistic decisions, as otherwise the assumption would have to be made that there are
always uncommitted writes. The only other change is related to the integration with schedule
bounding: a pre-emption immediately before (or immediately after) a phantom thread is free.
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5 correctness

In order to be useful, a testing tool must be correct. More specifically, it needs to be:

Sound
Every result which the testing functions report as possible can show up under actual
execution.

Complete
The testing functions report as possible every result which can show up under actual
execution.

Nothing is missed, and nothing is made up. Comparing test results against multiple actual
results can give confidence in the correctness of Déjà Fu, but the whole point of systematic
concurrency testing is to move away from running things many times! In order to be certain
of correctness, a correspondence must be established, formally, between the semantics of the
true concurrency abstraction and the testing implementation.

Establishing the correctness of Déjà Fu decomposes very naturally into two parts: is the
execution of a computation under a single arbitrary schedule correct; and is the SCT imple-
mentation correct?

5.1 Correct Execution

Correctness of execution asks whether the result of an arbitrary execution of Déjà Fu’s testing
implementation can be obtained in reality. Furthermore, do all real-world executions corre-
spond to a possible execution under Déjà Fu? To put it more simply:

• Is the behaviour of the primitive functions the same?

• Is the granularity of scheduling decisions the same?

Both of these come with the caveat that the behaviour can be different, as long as this
difference can’t be observed.

Primitives

The method of implementing the members of the MonadConc typeclass that would be most
amenable to proof would be to implement analogues of the GHC primitives directly, and im-
plement everything else in terms of these. This matches how actual Haskell is implemented,
and would lend itself to establishing a formal correspondence between the Déjà Fu primi-
tives and the GHC primitives, and the higher-level MonadConc functions and the higher-level
functions in Control.Concurrent.

This approach was not taken, however. Firstly, it would tie the implementation and correct-
ness of Déjà Fu very closely to the implementation of GHC; in principle the implementation
of GHC’s concurrency primitives could be completely changed but the behaviour preserved.
Secondly, it would restrict Déjà Fu to a very specific type of concurrency, supporting low-level
operations, which may not map to all interesting implementations of concurrency.
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Instead, a reimplementation of GHC’s concurrency based on the documented and observ-
able behaviour of the various functions was done. This allows observing the behaviour of
a program and determining, intuitively, whether it is correct or not; but it’s not so good for
proof. The matter is complicated by there being no standard for concurrent Haskell, there is
only what GHC provides.

The correctness of operations using CRefs is complicated even further, as the behaviour of
these depends on the underlying memory model. Total store order was chosen to be the
default, as it is what x86 processors do with unsynchronised memory accesses. But a CRef

is more complicated than a simple memory cell: it is a pointer to a cell, which can be moved
around in garbage collection, and it is accessed through primitive operations more complicated
than simple loads and stores. The lack of a standard, or even comprehensive documentation,
means that to discover the memory model for CRefs, the compilation of IORef functions must
be traced through GHC from Haskell source to machine code. As GHC uses C-- as an inter-
mediary language, this may also require determining a memory model for C--.

Finally, there are some intended departures from the behaviour of GHC’s behaviour docu-
mented in §2.1:

• getNumCapabilities is not required to return a true result.

• Deadlock detection can only function to the same extent as GHC if every thread is anno-
tated with which CVars and CTVars it knows about, as Déjà Fu cannot use the garbage
collector for this task.

• catch is not required to be able to catch exceptions from pure code.

Scheduling

The stepwise implementation allows for a scheduling decision to be made between each prim-
itive action, which doesn’t quite correspond to how GHC handles scheduling:

“GHC implements pre-emptive multitasking: the execution of threads are interleaved in a random
fashion. More specifically, a thread may be pre-empted whenever it allocates some memory, which
unfortunately means that tight loops which do no allocation tend to lock out other threads (this only
seems to happen with pathological benchmark-style code, however).” GHC Base Libraries [2015]

That is, GHC allows for pre-emptions to occur whilst evaluating pure code, which the step-
wise executor does not. So there are executions involving the pre-emption of the evaluation of
non-terminating expressions which are possible under GHC but not under Déjà Fu. Whether
this can be used to produce different outputs is less clear.

5.2 Correct Testing

Correctness of testing asks whether the schedule prefixes generated by the partial-order reduc-
tion mechanism are valid, and are there any results possible in real-world execution for which
no schedule will be generated? This is definitely not the same as asking if every real-world
schedule will be generated by the testing framework, as that is precisely what partial-order
reduction tries to avoid.
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Prefix Validity

Multiple executions with different schedules are stored internally as a tree, with each path
from the root to a leaf corresponding to a complete execution:

data BPOR = BPOR

{ runnable :: Set ThreadId

, todo :: Set Threadid

, done :: Map ThreadId BPOR

, action :: Maybe ThreadAction

}

The runnable field is the set of all threads runnable at that point; todo is the decisions
still to try making; done is the decisions already made; and action is what was done at this
step. The action field has a Maybe type, because initially no action has been performed, as the
computation hasn’t yet started.

There is a unique initial state, where only the initial thread is runnable and nothing has been
done:

initialState :: BPOR

initialState = BPOR (singleton 0) (singleton 0) empty Nothing

There are some basic well-formedness invariants associated with a BPOR value:

• Every decision in the to-do set is possible: todo ⊆ runnable

• Every decision in the done map is possible: dom done ⊆ runnable

• No decision that has been done is in the to-do set: todo∩ dom done = ∅

• These properties hold recursively: ∀p ∈ ran done. well formed p

Some work has been started in the Isabelle/HOL theorem prover to formalise part of the re-
cursive loop in sctBounded (see §4.2) and to prove that the invariants are preserved, assuming
that the stepwise executor is correct. It is hoped that schedule prefix validity will follow from
this. Specifically, the things to be proved are:

• A prefix produced by next is valid if the BPOR tree is well-formed; furthermore, it consists
of a sequence of decisions that have already been made and is terminated by a single
decision from a to-do set.

• next returns Nothing if and only if the todo field of every node in the BPOR tree is empty.

• grow adds the information in a trace to the BPOR tree, making no other changes.

Data structure invariants are important properties to verify, as if they are broken any as-
sumptions made in the rest of the code cannot be trusted.
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Result Completeness

The simplest notion of completeness of interest here is that for all results possible by executing
a given program for real, the partial-order reduction framework can give that result.

However, as schedule bounding is involved, this is clearly not the case. Here are two differ-
ent notions of completeness:

• If the bounds are all set to ∞, all results possible under real execution show up under
Déjà Fu execution.

• For all sets of bounds, all results possible under real execution subject to those bounds
show up under Déjà Fu execution with the same bounds.

The former corresponds to the correctness of partial-order reduction with no bounds, and
does not imply the latter. The latter implies the former, and is the more interesting property.
The latter is what we really want of our testing framework.

The proof would need to proceed by first showing that the dependency relation is correct:
only actions related by the dependency relation can influence each others results. It’s not clear
how to approach this, as it relies on the implementation of the actions. Once the correctness of
the dependency relation is established, it must be shown that the partial-order reduction only
prunes schedules where there is no dependency.

6 case studies

Three case studies are discussed, two of which are from pre-existing libraries which have
been modified to use the MonadConc abstraction. Two known bugs are reproduced in the auto-
update14 library. Then, there is a bug which arose unintentionally in the implementation of a
library for expressing parallel search problems, where an incorrect use of CTMVars allowed a
user to observe a partial result. Finally, one of the schedulers in the monad-par15 package is
tested.

6.1 auto-update

The auto-update library runs tasks periodically, but only if needed. For example, a single worker
thread may get the time every second and store it to a shared IORef, rather than have many
threads starting within a second of each other all get the time independently [Snoyman, 2014].
Despite the core functionality being very simple, two race conditions were noticed by users
inspecting the code in October 2014.

The entire implementation, excluding comments and imports, is reproduced in Figure 1.
The mkAutoUpdate function spawns a worker thread, which performs the update action at the
given frequency, only if the needsRunning flag has been set. It returns an action to attempt
to read the current result, if necessary blocking until there is one. The transformation to the
MonadConc typeclass is mostly simple, however the threadDelay must be wrapped inside a
call to liftIO.

14 https://hackage.haskell.org/package/auto-update

15 https://hackage.haskell.org/package/monad-par
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data UpdateSettings a = UpdateSettings

{ updateFreq :: Int

, updateSpawnThreshold :: Int

, updateAction :: IO a

}

defaultUpdateSettings :: UpdateSettings ()

defaultUpdateSettings = UpdateSettings

{ updateFreq = 1000000

, updateSpawnThreshold = 3

, updateAction = return ()

}

mkAutoUpdate :: UpdateSettings a -> IO (IO a)

mkAutoUpdate us = do

currRef <- newIORef Nothing

needsRunning <- newEmptyMVar

lastValue <- newEmptyMVar

void $ forkIO $ forever $ do

takeMVar needsRunning

a <- catchSome $ updateAction us

writeIORef currRef $ Just a

void $ tryTakeMVar lastValue

putMVar lastValue a

threadDelay $ updateFreq us

writeIORef currRef Nothing

void $ takeMVar lastValue

return $ do

mval <- readIORef currRef

case mval of

Just val -> return val

Nothing -> do

void $ tryPutMVar needsRunning ()

readMVar lastValue

catchSome :: IO a -> IO a

catchSome act = catch act $

\e -> return $ throw (e :: SomeException)

Figure 1: auto-update implementation

The simpler race condition occurs if the reading thread is pre-empted by the worker thread
after putting into needsRunning, and does not run again until after the delay has passed. In this
case the worker thread can become blocked on taking for a second time from needsRunning.
The reader thread will be unable to read from lastValue as the worker thread emptied it as
the last action it performed. The race condition can be exhibited with the following test:

test :: (MonadConc m, MonadIO m) => m ()

test = join (mkAutoUpdate defaultUpdateSettings)
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This test was chosen as it is one of the simplest things a user may wish to do with the library:
to create the worker, and to then read the computed value. The output of testing shows the
different results that were found, with a sample trace leading to each one:

> autocheckIO test

[fail] Never Deadlocks (checked: 1)

[deadlock] S0--------S1-----------S0-

[pass] No Exceptions (checked: 9)

[fail] Consistent Result (checked: 8)

[deadlock] S0-----P1-S0---S1-----------S0-

() S0--------S1---------P0---

False

The autocheckIO function is used to search for deadlocks, uncaught exceptions in the main
thread, and nondeterminism in results. It allows the use of liftIO, there is an autocheck

function which does not.
“Sn” indicates that thread n began executing after the prior one blocked, “Pn” indicates that

thread n pre-empted the prior one. It is also possible to obtain a richer data structure with a
clearer account of what happened.

To read this trace, it is helpful to look at the “S” points, rather than to count the steps.
Using this tactic, we can see that a deadlock occurs if the initial thread runs until it blocks
(which is the readMVar lastValue call), then thread 1 runs until it blocks (the second time
takeMVar needsRunning is reached). At this point the initial thread is runnable, as it was
unblocked by the write to lastValue. This is scheduled, and immediately blocks because
thread 1 took the value. Both threads are now blocked, and so the computation is deadlocked.

This deadlock may arise in any use of the library, as it depends only on the timing of the
delay, and not on the computation performed. If the call to threadDelay completes before the
reading thread has resumed execution, this situation will arise.

The more complex race condition arises if readMVar isn’t atomic, as in GHC versions before
7.8. The readMVar function used to be a combination of a take and a put. In this case an old
value can be returned if the read of lastValue is pre-empted between these two operations, as
shown in this test:

test :: (MonadConc m, MonadIO m) => m Int

test = do

var <- newCRef 0

let action = modifyCRef var $ \x -> (x+1, x)

auto <- mkAutoUpdate $ defaultUpdateSettings { updateAction = action }

auto

auto

Here auto is called twice to update the counter variable twice. Actually reproducing this
bug requires a new readCVar function be written, which has the same behaviour as the old
readMVar function. Exhibiting this bug requires three pre-emptions. As we need to supply
our own bounds, we cannot use autocheckIO. The more dejafuIO’ function allows for the
memory model and bounds to be specified:
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> let bounds = defaultBounds { preEmptionBound = Just 3 }

> dejafuIO’ TotalStoreOrder bounds test ("Consistent Result", alwaysSame)

[fail] Consistent Result (checked: 23)

[deadlock] S0------P1-S0---S1-----------S0-

0 S0---------S1--------P0-----

1 S0---------S1---------P0---P1--------P0---

Here we see two different (non-deadlocking) results. The issue is the readMVar in the main
thread and the tryTakeMVar followed by putMVar in the other. If the main thread takes from
the MVar before the tryTake, it will retrieve the prior value. This in itself is not a problem.
However, if the main thread then puts that value back between the tryTake and the put, the
put will block, and not be able to store the updated value.

Despite the bugs being rather simple, one not requiring any pre-emptions at all to trigger,
they both arose in practice. How easy it is to make mistakes when implementing concurrent
programs!

6.2 Search Party

The Search Party16 library supports speculative parallelism in generate-and-test search prob-
lems. It is motivated by the consideration that if multiple acceptable solutions exist, it may
not matter which one is returned. In early versions of the library, only single results could be
returned, but support for returning all results was later added, incorrectly, introducing a bug.

The library provides a collection of combinators used to express a generate-and-test problem,
which are executed in using a concurrent producer/consumer pattern. One worker thread is
created for each capability, which share a list of work items and communicate results back to
the main thread.

The key piece of code causing the problem was this part of the worker loop:

case maybea of

Just a -> do

atomically $ do

val <- tryTakeCTMVar res

case val of

Just (Just as) -> putCTMVar res $ Just (a:as)

_ -> putCTMVar res $ Just [a]

unless shortcircuit $

process remaining res

Nothing -> process remaining res

Here maybea is a value indicating whether the computation just evaluated was successful.
The intended behaviour is that, if a computation is successful, its result is added to the list in
the res CTMVar. This CTMVar is exposed indirectly to the user of the library, as it is blocked
upon when the final result of the search is requested.

There are some tests in Search Party, checking that deadlocks and exceptions don’t arise, and
that results which should be deterministic really are. Upon introducing this new functionality,

16 https://github.com/barrucadu/search-party
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these tests began to fail with differing result lists returned for different schedules, prompting
a new test:17

checkResultLists :: Eq a => Predicate [a]

checkResultLists = representative (alwaysTrue2 check) where

check (Right (Just as)) (Right (Just bs)) = as ‘elem‘ permutations bs

check a b = a == b

Given this predicate, we can very clearly see the problem:

> dejafu (runFind $ [0..2] @! const True) ("Result Lists", checkResultLists)

[fail] Result Lists (checked: 145)

Just [0] S0-----S1---------S3-------S0-------

Just [1] S0-----S1---------S3---P2-------S0-------

Just [1,0] S0-----S1---------S3-------S2-------S0-------

Just [0,1] S0-----S1---------S3---P2-------S3----S0-------

False

The @! operator is a concurrent filter, with the order of results nondeterministic. The prob-
lem was a lack of any indication that a list-producing computation had finished. As results
were written directly to the CTMVar, partial result lists could be read depending on how the
worker threads and the main thread were interleaved.

In this case, fixing the failure did not require any interactive debugging. Only one place had
been modified in introducing the new functionality, and the bug was found by re-reading the
code with the possibility of error in mind. However, the ability to produce a test case which
reliably reproduces the problem gives confidence that it will not be accidentally reintroduced.

6.3 The Par Monad

The Par monad [Marlow et al., 2011] is a library providing a traditional-looking concurrency
abstraction, providing the programmer with threads and mutable state, however it maintains
determinism by restricting its shared variables to one write, and operations to read block until
a value has been written. Thus, Par’s IVars are futures, not mutable state. Par uses a work-
stealing scheduler running on multiple operating system threads, fully evaluating values on
their own threads before inserting them into an IVar. Despite its limitations, the Par monad
can be very effective in speeding up pure code.

The following example maps a function in parallel over a list, fully evaluating it. Of course,
laziness is generally what is desired in Haskell programs, but often it is known that an entire
result will definitely be needed:

parMap :: NFData b => (a -> b) -> [a] -> [b]

parMap f as = runPar $ do

bs <- mapM (spawnP . f) as

mapM get bs

17 The representative function picks only one trace for each unique result.
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However, with a lack of multi-write shared variables and non-blocking reads, Par is unsuit-
able for long-lived concurrent programs with a central shared state. It could not be used to
implement a multi-threaded work-stealing scheduler, such as the one underpinning Par itself.
The library provides a number of different schedulers, the default being the “trace” scheduler.
Due to reports of potential deadlocks with the “direct” scheduler from a year ago, it was tested
with Déjà Fu.

To reduce the effort in modifying the code, only the direct dependencies of the “direct”
scheduler were modified, the rest of the library being left unchanged. This resulted in four
files needing change: two from the abstract-deque18 package and two from the monad-par19

package.
Converting monad-par to use Déjà Fu was quite simple. All relevant types were parametrised

by the underlying monad, all functions had a MonadConc context added, functions were swapped
for their Déjà Fu alternatives, and a runPar’ function was added:

runPar’ :: MonadConc m => Par m a -> m a

Some simplifications were made in the conversion process:

• Par normally uses the mwc-random20 package when performing its internal scheduling.
This was replaced with a StdGen, as mwc-random does not allow the user to provide a
seed.

• Behaviour of the Par scheduler can be configured using cpp, but only the default config-
uration was tested.

Figure 2 shows the original and converted scheduler initialisation code. As can be seen, they
are very similar, even though this is a core component of a rather sophisticated library, where
the types have been changed.

In total, there were 127 changed lines across the two modules of interest, out of 647 total. 47

of these were type signatures, 10 were type and data declarations, and 4 were typeclass instance
declarations. Of the 66 remaining lines, over half were renaming *MVar and *IORef functions
to their *CVar and *CRef equivalents. The remaining lines were a combination of import
declarations, calls to getNumCapabilities (Déjà Fu does not provide the numCapabilities

binding, which was used in several places), and replacing liftIO with lift from the mtl21

package.
The refactoring was driven entirely by resolving type errors, after first parameterising the

basic types on the underlying monad, rather than assuming IO. The more general types could
even be hidden from the user by providing type synonyms to supply IO as the monad, making
the new functionality purely an internal concern, but one which allows testing.

Converting the abstract-deque package proved a little more challenging, as the typeclass in-
terface requires knowledge of both the queue type and the monad results are produced in.
This issue was solved by use of type families. This solution is not ideal as it adds explicit
knowledge of MonadConc to the DequeClass typeclass, but it suffices for testing purposes:

18 https://hackage.haskell.org/package/abstract-deque

19 https://hackage.haskell.org/package/monad-par

20 https://hackage.haskell.org/package/mwc-random

21 https://hackage.haskell.org/package/mtl
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makeScheds :: Int -> IO [Sched]

makeScheds main = do

caps <- getNumCapabilities

workpools <- replicateM caps R.newQ

rngs <- replicateM caps

(Random.create >>= newHotVar)

idle <- newHotVar []

sessionFinished <- newHotVar False

let sess = [Session baseSessionID sessionFinished]

sessionStacks <- mapM newHotVar

(replicate caps sess)

activeSessions <- newHotVar S.empty

sessionCounter <- newHotVar (baseSessionID + 1)

let allscheds =

[ Sched { no=x, idle, isMain=(x==main),

workpool=wp, scheds=allscheds,

rng=rng, sessions=stck,

activeSessions=activeSessions,

sessionCounter=sessionCounter

}

| x <- [0 .. caps-1]

| wp <- workpools

| rng <- rngs

| stck <- sessionStacks

]

return allscheds

Original
makeScheds :: MonadConc m => Int -> m [Sched m]

makeScheds main = do

caps <- getNumCapabilities

workpools <- replicateM caps R.newQ

rngs <- replicateM caps

(newHotVar (mkStdGen 0))

idle <- newHotVar []

sessionFinished <- newHotVar False

let sess = [Session baseSessionID sessionFinished]

sessionStacks <- mapM newHotVar

(replicate caps sess)

activeSessions <- newHotVar S.empty

sessionCounter <- newHotVar (baseSessionID + 1)

let allscheds =

[ Sched { no=x, idle, isMain=(x==main),

workpool=wp, scheds=allscheds,

rng=rng, sessions=stck,

activeSessions=activeSessions,

sessionCounter=sessionCounter

}

| x <- [0 .. caps-1]

| wp <- workpools

| rng <- rngs

| stck <- sessionStacks

]

return allscheds

Déjà Fu

Figure 2: Par “direct” scheduler initialisation
34



class MonadConc (MConc d) => DequeClass d where

type MConc d :: * -> *

newQ :: MConc d (d elt)

...

Only 47 lines out of 342 across three modules needed change. 20 of these were in type signa-
tures, 8 in type and data declarations, and 6 in typeclass instances. The remaining lines were,
again, renaming *IORef functions to *CRef equivalents, import statements, and the addition
of a type family as displayed in the code sample above.

With the constant value ‘PRNG’, a deadlock was discovered. It only arises after 200 queries.
Given that the range of values is from 0 to the number of capabilities, and the probability is
uniformly distributed, the probability of an actual deadlock is about 4× 10−121 on a quad-core
computer. No deadlocks were discovered when using the StdGen generator, with a variety of
initial seeds tried. If there is still a deadlock, it may require more than 2 capabilities to manifest.

Due to the very contrived nature of the one deadlock found, and the length of the trace, it is
not displayed here. If there is anything that can be taken away from this experiment with the
Par monad, it is that it is very reliable.

7 practical usage

A tool is effectively useless if it is too difficult to use. The main obstacle to the use of Déjà
Fu is existing libraries which use IO; one cannot simply use liftIO everywhere, without
almost certainly sacrificing completeness in all but trivial examples. Ideally, existing libraries
would be modified to support the MonadConc abstraction. However, this does not seem a likely
short-term goal, and so a more promising way to approach the problem is to provide feature-
complete alternatives to existing libraries. As adapting code to MonadConc is not very difficult
given the ability to also modify the dependencies, as seen in the Par monad case study, this is
a viable short-term solution.

A second, more tractable, problem is integration with existing testing frameworks; using
Déjà Fu for little stand-alone programs is all well and good, but in order to take off, it must be
easy to use in the testing context people are already familiar with.

7.1 Alternatives to Existing Libraries

There are popular Haskell libraries specifically for concurrency. One of these is the async22

library, for expressing asynchronous computations. This library is intended to be a higher-
level and safer way of expressing asynchronous computations than using forkIO and MVars
directly. It provides two main functions to execute an action asynchronously:

async :: IO a -> IO (Async a)

withAsync :: IO a -> (Async a -> IO b) -> IO b

22 https://hackage.haskell.org/package/async

35

https://hackage.haskell.org/package/async


Both of these fork the computation into a separate thread, returning an Async value, which
contains an MVar which can be blocked on in order to retrieve the result. In addition, withAsync
kills the thread if the inner action completes before it, to help prevent resource leaks.

There is a further abstraction atop Async, called Concurrently, which has Functor, Applica-
tive, and Alternative instances, and represents an action which can be composed with other
actions and execute concurrently. The concurrency is achieved by having (<*>) execute each
action asynchronously. There was a Monad instance proposed for Concurrently, but this
broke the laws, as ap was not the same as (<*>)23. This was due to ap executing its arguments
sequentially, the only option with (>>=).

This law-breaking could have been discovered through testing, but only probabilistically. If
async were written using MonadConc, the relevant laws could have been specified as unit tests
and checked. The bug might then have been caught before it showed up in user code.

To address both of these issues, there is an async-dejafu package, which provides almost the
same API as async, but is parameterised by a MonadConc, giving functions like this:

async :: MonadConc m => m a -> m (Async m a)

withAsync :: MonadConc m => m a -> (Async m a -> m b) -> m b

There is a test suite using Déjà Fu. The test suite for async just runs most tests a single
time, although one of them is run 1000 times. Using Déjà Fu here to automatically seek out
interesting schedules is a much more principled approach then repetition and hope.

Not all of the features of async are supported by async-dejafu: as MonadConc does not support
bound threads, those functions that use them have been omitted.

Of course, async is just one library, and providing an alternative library people will have
to switch to is far from optimal. However, until library authors start to use Déjà Fu and
MonadConc directly, such alternatives will be needed to answer the question “Why should I use
this if I can’t use it with all of my familiar tools?”

7.2 Integration with Testing Frameworks

There are two popular libraries for unit testing in Haskell, HUnit24 and tasty25. From the
perspective of the user, both libraries are very similar, but from the perspective of the imple-
menter, they have different approaches to integration. Packages hunit-dejafu26 and tasty-dejafu27

provide integration with both.
These packages provide a common set of testing functions, an analogue of Test.DejaFu but

constructing values representing individual tests which the frameworks can run, rather than
executing and printing results directly:

testAuto :: (Eq a, Show a) => (forall t. ConcST t a) -> Test

testDejafu :: Show a => (forall t. ConcST t a) -> String -> Predicate a -> Test

testDejafus :: Show a => (forall t. ConcST t a) -> [(String, Predicate a)] -> Test

23 https://github.com/simonmar/async/pull/26

24 https://hackage.haskell.org/package/HUnit

25 https://hackage.haskell.org/package/tasty

26 https://hackage.haskell.org/package/hunit-dejafu

27 https://hackage.haskell.org/package/tasty-dejafu
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Here Test is the type of individual tests, from HUnit. The tasty library uses TestTree, which
has a similar purpose; it also uses TestName rather than String. To complete the set, there are
variants of these functions for ConcIO, and also taking the schedule bounds and memory type
as parameters. All of the testing functions are implemented in terms of testDejafus’ and
testDejafusIO’.

The test-framework28 library is also in common use, however it supports integration with
HUnit, and so needs no special support. of its own.

HUnit

Tests in HUnit are just thinly wrapped IO () actions, which can be grouped together into
collections and given names. The testing model is very simple: a test fails if and only if it
produces some output. Test-running functions throw an exception if they fail, terminating the
rest of the test case.

test :: Show a => MemType -> Bounds -> (forall t. ConcST t a)

-> [(String, Predicate a)] -> Test

test memtype cb conc tests = case map toTest tests of

[t] -> t

ts -> TestList ts

where

toTest (name, p) = TestLabel name . TestCase . assertString . showErr $ p traces

traces = sctBound memtype cb conc

Here, each (String, Predicate a) pair is turned into a separate test case. If there is only
one, it is returned directly, otherwise the test cases are grouped together into a TestList.

The assertString function is provided by HUnit. The test fails if its string argument is
non-empty, showErr here is a function to pretty-print the failures.

tasty

In contrast to the simple function-based method of HUnit, tasty has a much more complex
approach. It defines a typeclass IsTest of things which can be converted to a unit test:

test :: Show a => MemType -> Bounds -> (forall t. ConcST t a)

-> [(TestName, Predicate a)] -> TestTree

test memtype cb conc tests = case map toTest tests of

[t] -> t

ts -> testGroup "Deja Fu Tests" ts

where

toTest (name, p) = singleTest name $ ConcTest traces p

traces = sctBound memtype cb conc

This is very similar to the HUnit approach, but instead of constructing a test value directly,
it constructs an intermediate ConcTest value. Note also that tasty does not allow nameless test
lists.

28 https://hackage.haskell.org/package/test-framework
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data ConcTest where

ConcTest :: Show a => [(Either Failure a, Trace)] -> Predicate a -> ConcTest

deriving Typeable

instance IsTest ConcTest where

testOptions = return []

run _ (ConcTest traces p) _ =

let err = showErr $ p traces

in return $ if null err then testPassed "" else testFailed err

The tasty library is definitely more featureful than HUnit, but this comes at the cost of
additional complexity for developers trying to integrate new functionality.

8 conclusions , related & future work

This work was inspired by attending a talk at INVEST 2014
29 by Paul Thompson, then a Ph.D

student at Imperial College London, on systematic concurrency testing, the talk mentioned
tools for languages like Java and C, but functional languages were not mentioned at all. The
questions to be answered, then, were:

• Can concurrency testing techniques from the imperative and object-oriented worlds
be applied in the functional world?

The answer to this would seem to be a resounding “yes”. There was some difficulty
in implementing these techniques in a purely functional setting, as the algorithms are
typically expressed in terms of mutable state, but this was overcome.

• Does the purely functional setting allow for new techniques to be developed?

Initially it was hoped that the lack of side-effects in regular evaluation, amongst other
things, would allow for new techniques to be developed. Unfortunately, as concurrency
testing explicitly cares about execution rather than evaluation (although these are one and
the same in most languages), this does not seem to be the case.

In [Walker and Runciman, 2015], we asked if the cost of a programmer needing to write
their code in terms of MonadConc rather than IO was too high, and would discourage people.
This is still a concern, but with the development of libraries to integrate with or replace others,
we hope that the use of Déjà Fu will appear attractive enough to overcome this.

The contributions of this work are:

• a generalisation of a large subset of the GHC concurrency abstraction;

• a library called Déjà Fu for the systematic testing of concurrent Haskell programs, in-
cluding those using relaxed-memory effects.

29 http://wp.doc.ic.ac.uk/verificationgroup/event/workshop-introduction-to-verification-and-testing-invest-2014/
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8.1 Related Work

There is a tension in testing concurrent programs between verification and bug-finding. For
verification, completeness is desirable, whereas for testing completeness can be sacrificed if
the number of defects found in non-contrived examples is not affected much. Furthermore,
by sacrificing completeness, speed can be gained, which is of great importance for developers
running a test suite repeatedly as development proceeds.

Partial-order methods were first introduced in [Godefroid, 1996], which also introduced the
insight that a concurrent execution can be thought of as a partial-order of the dependent actions
in the system. Initially, these methods were based on a static analysis of the program under
test. Further developments in [Flanagan and Godefroid, 2005] enabled the information needed
for partial-order methods to be obtained at run-time system, often leading to a reduction in
the amount of work done. The static analysis is necessarily conservative, whereas the dynamic
analysis has much more complete information available to it.

A different approach to testing concurrent programs was explored in [Musuvathi and Qadeer,
2007], where executions exceeding some pre-determined bound are simply not done. Complete-
ness is sacrificed in return for more rapid results of testing, on the assumption (later validated
by empirical studies such as [Thomson et al., 2014]) that realistic test cases could find bugs
within a small bound.

It was later shown in [Coons et al., 2013] that these two approaches, partial-order reduction
and schedule bounding, can be unified. The result is necessarily incomplete. However it can
reduce the number of executions tried to a far greater extent than either of the two component
methods alone. With the evidence that schedule bounding isn’t a problem in practice for
testing, this became a widely-adopted method.

An assumption of key importance in concurrency testing is that all nondeterminism arises
from the scheduler. Most other sources, such as random number generators, can be handled by
(for example) using a fixed seed. However, in the quest for ever more performance, hardware
manufacturers imposed relaxed memory architectures on programmers, where reads and writes
done in parallel can give results impossible under sequential consistency.

[Zhang et al., 2015] showed how this additional source of nondeterminism can be handled,
by modelling a single level of cache (which corresponds to total-store order or partial-store
order) as simply a separate thread, committing writes to memory.

A different approach to reducing the work done as a refinement of a pure partial-order
reduction approach was taken in [Sen, 2007], which uses random scheduling. Partial-order
reduction is used to prune the search space, but random decisions are made where there are
still multiple choices available. Random scheduling itself does not necessarily work very well,
as some partial orders have more total order refinements than others, hence pruning the search
space in partial-order reduction was reported to be an effective way to increase the bug-finding
ability of random scheduling.

This work was furthered in [Sen, 2008], which does away with the partial-order reduction
entirely in favour of a simpler race condition detection approach. The algorithm consists of
two phases: firstly, all pairs of possibly-racing operations are computed; secondly, for each
pair, execution proceeds with a random scheduler. When one of the identified statements is
about to be executed, that thread is instead postponed until another thread is about to execute
the other statement, the race is then randomly resolved and execution continues. Rather than

39



exploring all partial orders, this approach is a probabilistic one, but is guaranteed to explore
only racing partial orders. This approach has an advantage in programs which have many
non-racy partial orders, where randomly choosing between them does not reliably produce a
bug.

Pulse [Claessen et al., 2009] is a user-level scheduler for Erlang programs implementing co-
operative multi-tasking. An instrumentation process automatically modifies existing programs
to call out to this scheduler. Pulse works by only allowing one of the threads to operate at
a time, and makes scheduling decisions around actions with side-effects: such as a process
receiving a message. It also allows interaction with uninstrumented functions, which are
treated as atomic, allowing tested subsystems to be composed without exploring interleavings
within the subsystem. This is not possible in general in Déjà Fu due to the support for relaxed
memory, which Erlang does not have. Pulse scheduling decisions are made randomly, using
a provided seed, and a complete execution trace is returned, which can be rendered into a
graphical form showing the interactions between threads to aid debugging. Although Pulse

is not a concurrency testing tool as such, it is a core component of one, and testing can be
done by simply trying different random seeds. The authors report that the graphical traces
can often suggest potential race conditions which have not been evident to a human reader.

Sen’s 2008 work was then used in [Arts et al., 2011] to improve race condition detection in
Erlang. Pulse is used to generate an execution trace, which is then examined for possible
race conditions, which are delayed and randomly resolved as in Sen’s work. The authors
reported that improvements can result in new bugs being found, although in the cases where
the procrastination was not necessary to find the bug, performance degrades. This is because
one test with procrastination is actually several program executions with different schedules.

Although the MonadConc typeclass was structured to be similar to the standard concurrency
primitives, the inspiration for this approach, and the basic idea behind how to do SCT in
Haskell, was provided by [Ankuzik, 2014]. However, both the family of primitives and the
approach to testing have been significantly advanced.

An earlier version of this work was published as [Walker and Runciman, 2015]. The version
discussed in this publication does not make any use of partial-order reduction, relying solely
on schedule bounding to prune the search space. As a result it suffers from state explosion as
programs under test become larger, and is less applicable to real-world applications. Further-
more, it lacks any support for relaxed memory. This was originally a design decision, on the
assumption that most real-world concurrent Haskell programs do not use such behaviour, but
initial feedback led to this decision being revised.

8.2 Future Work

There are a number of areas available for further exploration.
Verification of Déjà Fu Work has already begun on the formalisation in Isabelle/HOL of

prefix validity in the SCT implementation. The other open issues of verification were discussed
in Section 5, but to summarise, these are: correctness of primitive actions; granularity of
scheduling decisions; generated schedule prefix validity; and result completeness.

Memory model for GHC Haskell / C-- In order to fully validate the testing stepwise
executor, a formulation of the memory model is necessary. One way to approach this would
be a formulation for all of the GHC Haskell primitives. As these are written in C--, which has
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no memory model, a formulation of that would also be necessary. Work on formalising the
C++11 memory model in [Batty et al., 2011] may be of use here.

Generating test cases for concurrent APIs The QuickSpec tool, introduced in [Claessen
et al., 2010], can generate laws that a collection of functions appear to hold based on random
testing. It can be used as a way to obtain suitable test cases, if the user selects the generated
laws that should hold, rather than those which merely accidentally hold. A QuickSpec-like tool
which can generate laws about a concurrency-using API would be interesting and useful.

Multi-level memory caching The current approach taken for modelling relaxed memory
assumes only a single level of cache. This works well for x86 processors. Other devices, such
as GPUs, group cores together where each core has a cache, and each group also has a cache.
This means writes can be visible to some but not all threads. A simple way to model this
would be to make group assignment static, and to have more types of commit. This would
require some implementation change, but is not a large difference in algorithm. The situation
becomes much more complex if group assignment is not static, introducing yes another source
of nondeterminism.

Application to distributed systems Different threads in a concurrent program need not
operate on the same machine, as long as the programmer cannot detect this. The major dif-
ficulty is the possibility of communication failure, which cannot happen when operating on a
single machine. Another is the memory model. A single level of cache corresponds roughly to
a central server with all communication going through it, rather than between nodes directly.
This can be alleviated with multiple levels of caching, but still results in undesirable centralisa-
tion. Work on modelling concurrent data stores as replicated eventually-consistent data types
in [Burckhardt et al., 2014] may be relevant.
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a primitive actions

There are currently 31 primitive actions used to construct the testing instances of MonadConc,
one of which only arises when testing under relaxed memory. These primitive actions contain
a continuation, allowing individual actions to be composed into larger execution sequences.
Each thread of execution consists of such a sequence, terminated by the AStop primitive, which
has no continuation and signals the termination of the thread.

Threads, CVars, CRefs, and CTVars may be given names, which are displayed in execution
traces. If no name is given, a unique numeric identifier is used instead.

Threading

AFork name (unmask → action) (thread id →
action)

Create a new thread from the first action, and continue
executing the current thread with the second.

AMyTId (thread id→ action) Continue execution of the current thread by querying the
thread identifier.

AYield action Execute the given action, but also signify to the scheduler
that it may be worth running a different thread now.

AStop Terminate the current thread.

CRefs

ANewRef name a (cref a→ action) Construct a new CRef and give it to the continuation.

AReadRef (cref a) (a→ action) Read the currently visible value of a CRef.

AReadRefCas (cref a) (ticket a→ action) Produce a Ticket from the currently visible state of a
CRef.

APeekTicket (ticket a) (a→ action) Get the value out of a Ticket.

AModRef (cref a) (a→ (a, b)) (b→ action) Commit all pending writes and atomically modify the
value within a CRef.

AModRefCas (cref a) (a→ (a, b)) (b→ action) Commit all pending writes and atomically modify the
value within a CRef using a compare-and-swap.

AWriteRef (cref a) a action Update the value of a CRef. The updated value is visible
to the current thread immediately.

ACasRef (cref a) (ticket a) a ((succeeded?,
ticket a)→ action)

Update the value of a CRef if it hasn’t changed since the
ticket was produced..

ACommit thread id cref id Make the last write to the given CRef by that thread visible
to all threads.

CVars

ANewVar name (cvar a→ action) Construct a new CVar and give it to the continuation.

APutVar (cvar a) a action Block until the CVar is empty and put a value into it.

ATryPutVar (cvar a) a (succeeded? → action) Try to put a value into the CVar without blocking.

AReadVar (cvar a) (a→ action) Block until the CVar is full and read its value.

ATakeVar (cvar a) (a→ action) Block until the CVar is full and take its value.

ATryTakeVar (cvar a) (Maybe a→ action) Try to take the value from a CVar without blocking.
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Exceptions

AThrow exception Raises an exception in the current thread, terminating the
current execution.

AThrowTo exception action Raises an exception in the other thread, blocking if the
other thread has exceptions masked.

ACatching (exception → handler) action con-
tinuation

Registers a new exception handler for the duration of the
inner action.

APopCatching action Remove the exception handler from the top of the stack.

AMasking masking state (unmask → action)
continuation

Executes the inner action under a new masking state, and
also gives it a function to reset the masking state.

AResetMask set? inner? masking state action Sets the masking state.

Software Transactional Memory

AAtom transaction continuation Execute an STM transaction atomically.

SNew name a (ctvar a→ action) Create a new CTVar containing the given value.

SRead (ctvar a) (a→ action) Read the current value of a CTVar.

SWrite (ctvar a) a action Update a CTVar.

SThrow exception Throw an exception, aborting the current execution flow.

SCatch (exception→ handler) action continua-
tion

Registers a new exception handler for the duration of the
action.

SRetry Abort the current transaction.

SOrElse transaction transaction continuation Try executing the first transaction, if it fails, execute the
second.

Testing Annotations

AKnowsAbout (Either cvar ctvar) action Record that the thread has access to the given variable.

AForgets (Either cvar ctvar) action Record that the thread no longer has access to the given
variable.

AAllKnown action Record that all variables the thread knows about have
been reported.

Miscellaneous

AReturn action Execute the given action.

ALift monadic action Execute an action from the underlying monad.
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